K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

Ta có : 

\(\frac{1}{4}< \frac{1}{3\cdot4};\frac{1}{5}< \frac{1}{4\cdot5};...;\frac{1}{15}< \frac{1}{14\cdot15}\)

\(\Rightarrow A< \frac{1}{3\cdot4}+\frac{1}{4.5}+...+\frac{1}{14\cdot15}\)

\(A< 1-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{14}-\frac{1}{15}\)

\(A< \frac{14}{15}< 2\left(đpcm\right)\)

2 tháng 8 2018

cảm ơn nhưng chắc chắn k

22 tháng 3 2018

A=1/4+1/5+1/6+...+1/15

A=1.484

=>A<2

22 tháng 3 2018

ai có cách nhanh hơn ko

giúp mk với

Giải

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)

\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)

Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)

\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

D< 1 - \(\dfrac{1}{20}\)

D< \(\dfrac{19}{20}\)<1

\(\Rightarrow\)D< 1

Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1

30 tháng 4 2017

A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)

A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)

Ta có :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :

\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1

A<\(\dfrac{49}{200}< \dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}\)

16 tháng 3 2018

A = \(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{15}\)

Ta có: \(\frac{1}{4}\)\(+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\) < \(\frac{1}{4}.4=1\)(1)

Ta có: \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\)\(\frac{1}{10}.10=1\)(2)

Từ (1) và (2) => \(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{15}\)

~~~

19 tháng 3 2019

Đặt \(A=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{15}\)

\(B=\frac{1}{5}+\frac{1}{6}+...+\frac{1}{10}< \frac{1}{5}+\frac{1}{5}+...+\frac{1}{5}=\frac{6}{5}\)

\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{17}< \frac{1}{11}+\frac{1}{11}+...+\frac{1}{11}=\frac{7}{11}\)

\(\Rightarrow B+C=A< \frac{6}{5}+\frac{7}{11}=\frac{101}{55}< \frac{110}{55}=2\)

\(\Rightarrow A< 2\left(đpcm\right)\)