Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(n\in\left\{1;2;3;4;5;...\right\}\)
2. \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{1009}\)
\(\Rightarrow A=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\)
Ta có :
\(\left(A-B-1\right)^{2019}=\left(\frac{1}{1010}+...+\frac{1}{2019}-\left(\frac{1}{1010}+...+\frac{1}{2019}\right)-1\right)^{2019}\)
\(=\left(-1\right)^{2019}=-1\)
B=ax.by⇒B2=a2x.b2yB=ax.by⇒B2=a2x.b2y ; B3=a3x.a3yB3=a3x.a3y
⇒⇒ số ước số tự nhiên của B2B2 là (2x+1)(2y+1)(2x+1)(2y+1)
⇒(2x+1)(2y+1)=15⇒(2x+1)(2y+1)=15
⇒⇒{2x+1=32y+1=5{2x+1=32y+1=5 ⇒{x=1y=2⇒{x=1y=2 hoặc {2x+1=52y+1=3{2x+1=52y+1=3 ⇒{x=2y=1⇒{x=2y=1
⇒⇒ số ước của B3B3 là (3x+1)(3y+1)=4.7=28
a, b là số tự nhiên khác 0
suy ra \(\frac{a+1}{b}+\frac{b+1}{a}>0\)
=> \(\frac{a+1}{b}+\frac{b+1}{a}\)là số tự nhiên.
Tiếp theo em tham khảo bài làm dưới link này nhé.
Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 7 - Học toán với OnlineMath
Đáp án cần chọn là: D
+) Ta có: A=1.3.5.7...13+20
Nhận thấy 5⋮5;20⋮5nên A=1.3.5.7...13+20 chia hết cho 5, do đó ngoài ước là 1 và chính nó thì A còn có ước là 5. Hay A là hợp số.
+) Ta có: B=147.247.347−13 có 247⋮13;13⋮13và 147.247.347–13>1 nên B=147.247.347−13 ngoài ước là 1 và chính nó thì A còn có ước là13. Do đó B là hợp số.
Vậy cả A và B đều là hợp số.