Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 3 + 32 + 33 + ... + 32014 + 32015
3B = 3( 3 + 32 + 33 + ... + 32014 + 32015 )
3B = 32 + 33 + ... + 32015 + 32016
2B = 3B - B
= 32 + 33 + ... + 32015 + 32016 - ( 3 + 32 + 33 + ... + 32014 + 32015 )
= 32 + 33 + ... + 32015 + 32016 - 3 - 32 - 33 - ... - 32014 - 32015
= 32016 - 3
2B + 3 = 3x
<=> 32016 - 3 + 3 = 3x
<=> 32016 = 3x
<=> x = 2016
\(B=\frac{1}{2015}+\frac{2}{2014}+...+\frac{2014}{2}+\frac{2015}{1}\)
\(=\left(1+\frac{1}{2015}\right)+\left(1+\frac{2}{2014}\right)+...+\left(1+\frac{2014}{2}\right)+\left(\frac{2015}{1}-2014\right)\)
\(=\frac{2016}{2015}+\frac{2016}{2014}+...+\frac{2016}{2}+\frac{2016}{2016}\)
\(=2016.\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+...+\frac{1}{3}+\frac{1}{2}\right)\)
\(=2016.A\)
\(\Rightarrow\frac{A}{B}=\frac{A}{2016.A}=\frac{1}{2016}\)
Vậy \(\frac{A}{B}=\frac{1}{2016}\)
a) Đầu tiên chúng ta lấy (1/2-1/2016):1+1:2 thì sẽ ra số cặp ở trong phép tính trên .
Tiếp theo ta sẽ lấy 1/2016 + 1/2 thì sẽ ra giá trị một cặp
Rồi ta lấy giá trị 1 cặp nhân với số cặp thì sẽ ra tổng của phép tính trên
b) ta cũng làm như phần a nhưng chỉ khác mỗi chỗ là tìm số cặp :phần b là (2015/1-1/2015):1+1:2 thì sẽ ra
Bạn thông cảm cho mình vì mình vì mình quên không mang máy tính về nên bạn tự tính nhé
a)
\(B=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3B=3\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow3B=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3B-B=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+3^3+3^{100}\right)\)
\(\Rightarrow2B=3^{101}-3\)
Mà \(2B+3=3^n\)
\(\Rightarrow3^{101}-3+3=3^n\)
\(\Rightarrow3^{101}=3^n\)
\(\Rightarrow n=101\)
Vậy \(n=101\)
a)
B = 3 + 32 + 33 + ... + 3100
3B = 32 + 33 + 34 + ... + 3101
3B - B = 3101 - 3
⇒ 2B = 3101 - 3
⇒ 2B + 3 = 3101 - 3 + 3
⇒ 3n = 3101
⇒ n = 101
Vậy n = 101
\(B+1=3^{2015}+3^{2014}+...+3^3+3^2+3+1\)
\(\Leftrightarrow2\left(B+1\right)=\left(3-1\right)\left(3^{2015}+3^{2014}+...+3^3+3^2+3+1\right)\)
\(\Leftrightarrow2B+2=3^{2016}-1\Leftrightarrow2B+3=3^{2016}\)
Vậy để \(2B+3=3^x\)thì x = 2016.
\(B=\left(\dfrac{1}{2015}+1\right)+\left(\dfrac{2}{2014}+1\right)+\left(\dfrac{3}{2013}+1\right)+...+\left(\dfrac{2014}{2}+1\right)+1\)
\(=\dfrac{2016}{2}+\dfrac{2016}{3}+...+\dfrac{2016}{2016}\)
=>B:A=2016
Ta có :
\(S=1+3+3^2+....+3^{2014}\)
\(\Rightarrow\left(3-1\right)A=\left(3-1\right)1+\left(3-1\right)3+\left(3-1\right)3^2+....+\left(3-1\right)3^{2014}\)
\(\Rightarrow2A=3-1+3-3^2+....+3^{2015}-3^{2014}\)
\(\Rightarrow2A=3^{2015}-1\)
\(\Rightarrow2B-2A=3^{2015}-\left(3^{2015}-1\right)\)
\(\Rightarrow2B-2A=1\)
\(\Rightarrow2\left(B-A\right)=1\)
\(\Rightarrow B-A=\frac{1}{2}\)
S = 1 + 3 + 32 + ... + 32014
= > ( 3 - 1 ) A = ( 3 - 1 ) 1 + ( 3 - 1 ) 3 + ( 3 - 1 ) 32 + ... + ( 3 - 1 ) 32014
= > 2A = 3 - 1 + 3 - 32 + ... + 32015 - 32014
= > 2A = 32015 - 1
= > 2B - 2A = 32015 - ( 32015 - 1 )
= > 2B - 2A = 1
= > 2 ( B - A ) = 1
= > B - A = \(\frac{1}{2}\)
Vậy B - A = \(\frac{1}{2}\)