K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2016

\(A=1+3+3^2+3^3+...+3^{10}\)

\(3A=3+3^2+3^3+3^4+..+3^{11}\)

\(3A-A=\left(3+3^2+3^3+3^4+..+3^{11}\right)-\left(1+3+3^2+3^3+...+3^{10}\right)\)

\(2A=3^{11}-1\)

\(2A+1=3^{11}-1+1\)

\(2A+1=3^{11}\)

Vậy: \(n=11\)

5 tháng 9 2019

3A=3(1+3+32+.....+310)

3A=3+32+33+34+....+311

3A-A=(3+32+33+34+....+311)-(1+3+32+.....+310)

2A=311-1

=>2A+1=311-1+1=311

Vậy n=11

5 tháng 9 2019

\(A=1+3+3^2+3^3+...+3^{10}\)

\(\Rightarrow3A=3+3^2+3^3+3^4+...+3^{11}\)

\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{11}\right)-\left(1+3+3^2+3^3+...+3^{10}\right)\)

\(\Rightarrow2A=3+3^2+3^3+...+3^{11}-1-3-3^2-3^3-...-3^{10}\)

\(\Rightarrow2A=3^{11}-1\)

\(\Rightarrow2A+1=3^{11}-1+1=3^{11}\) (1)

mà : \(2A+1=3^n\) (2)

Từ (1) và (2) \(\Rightarrow3^{11}=3^n\Rightarrow n=11\)

Vậy : \(n=11\) khi  \(2A+1=3^n\)

29 tháng 9 2017

\(A=1+3+3^2+...+3^{10}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{11}\)

\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{11}\right)-\left(1+3+3^2+..+3^{10}\right)\)

\(\Rightarrow2A=3^{11}-1\)

Có \(2A+1=3^n\)

\(\Rightarrow3^{11}-1+1=3^n\Rightarrow n=11\)

25 tháng 12 2016

bn ko lm thì thôi đừng như thế chứ

26 tháng 12 2016

mình làm ý nào cũng được nha