\(^2\)+2002\(^3\)+...+2002
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

Ta có \(B=\frac{2000}{4003}+\frac{2001}{4003}\)

Vì \(\frac{2000}{4003}< \frac{2000}{2001},\frac{2001}{4003}< \frac{2001}{2002}\) nên ta suy ra A<B

24 tháng 5 2016

A=2001/2002+2002/2003

B=2001/2002+2003+2002/2002+2003

(tớ tách B ra đấy)

mà 2001//2002+2002/2003>2001/2002+2003+ 202/2002+2003

A>B

15 tháng 4 2019

Ta có: B = \(\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}=\frac{2000}{4003}+\frac{2001}{4003}\)

Ta thấy : \(\frac{2000}{2001}>\frac{2000}{4003}\)(1)

             \(\frac{2001}{2002}>\frac{2001}{4003}\) (2)

Từ (1) và (2) cộng vế với vế, ta được :

  \(\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000}{4003}+\frac{2001}{4003}\)

hay \(A=\frac{2000}{2001}+\frac{2001}{2002}>B=\frac{2000+2001}{2001+2002}\)

13 tháng 7 2021

mình lớp5  nhưng mình bt làm

13 tháng 7 2021

Xét B=\(\frac{2000+2001}{2001+2002}\)\(=\)\(\frac{2000}{2001+2002}\)\(+\)\(\frac{2001}{2001+2002}\)

Mà  \(\frac{2000}{2001}>\frac{2000}{2001+2002}\);     \(\frac{2001}{2002}>\frac{2001}{2001+2002}\)                                                                                                  \(\Rightarrow\)\(\frac{2000}{2001}+\frac{2001}{2002}\)\(>\frac{2000+2001}{2001+2002}\)

Vậy        \(A>B\)

31 tháng 3 2016

A = \(\frac{2000+2001}{2001+2002}\)\(\frac{4001}{4003}\)

B = \(\frac{2000+2001}{2001+2003}=\frac{4001}{4003}\)

vậy A = B

31 tháng 3 2016

A=B chứ còn gì

30 tháng 3 2017

\(A=\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000}{2002}+\dfrac{2001}{2002}\)

\(=\dfrac{2000+2001}{2002}>\dfrac{2000+2001}{2001+2002}\)

nên \(A>B\)

12 tháng 5 2017

Ta có : \(\dfrac{2000}{2001}>\dfrac{2000}{2001+2002}\)

\(\dfrac{2001}{2002}>\dfrac{2001}{2001+2002}\)

\(\Rightarrow\) \(\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000+2001}{2001+2002}\)

Vậy A > B

18 tháng 5 2017

ta thấy:

\(B< 1\Rightarrow B< \frac{10^{2002}+1+9}{10^{2003}+1+9}=\frac{10^{2002}+10}{10^{2003}+10}=\frac{10\left(10^{2001}+1\right)}{10\left(10^{2002}+1\right)}=\frac{10^{2001}+1}{10^{2002}+1}=A\)

=>B<A

vậy.......

18 tháng 5 2017

Ta có:

\(A=\frac{10^{2001}+1}{10^{2002}+1}\Rightarrow10A=\frac{10\left(10^{2001}+1\right)}{10^{2002}+1}=\frac{10^{2002}+10}{10^{2002}+1}=\frac{10^{2002}+1+9}{10^{2002}+1}=1+\frac{9}{10^{2002}+1}\)

\(B=\frac{10^{2002}+1}{10^{2003}+1}\Rightarrow10B=\frac{10\left(10^{2002}+1\right)}{10^{2003}+1}=\frac{10^{2003}+10}{10^{2003}+1}=\frac{10^{2003}+1+9}{10^{2003}+1}=1+\frac{9}{10^{2003}+1}\)

Vì \(\frac{9}{10^{2002}+1}>\frac{9}{2^{2003}+1}\Rightarrow1+\frac{9}{10^{2002}+1}>1+\frac{9}{2^{2003}+1}\Rightarrow10A>10B\Rightarrow A>B\)

Vậy A > B