
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Ta có
1/2 =1/1.2
1/3 > 1/2 .3
1/4 > 1/3.4
......
1/50 > 1/49.50
A >1/1.2+1/2.3+1/3.4+...+1/49.50
A>1/1-1/2+1/2-1/3+...+1/49-1/50
A>1/1-1/50=49/50
vậy a<1

Bài 1:
a: p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2
Nếu p=3k+1 thì 8p+1=8(3k+1)+1=24k+8+1=24k+9=3(8k+3)⋮3
=>Loại
=>p=3k+2
4p+1=4(3k+2)+1
=12k+8+1
=12k+9
=3(4k+3)⋮3
=>4p+1 là hợp số
b: TH1: p=3
\(2p^2+1=2\cdot3^2+1=2\cdot9+1=18+1=19\) là số nguyên tố
=>Nhận
\(7p+2=7\cdot3+2=21+2=23\) là số nguyên tố
TH2: p=3k+1
\(2p^2+1=2\left(3k+1\right)^2+1=2\left(9k^2+6k+1\right)+1\)
\(=18k^2+12k+2+1=18k^2+12k+3=3\left(6k^2+4k+1\right)\) ⋮3
=>Loại
TH3: p=3k+2
\(2p^2+1=2\left(3k+2\right)^2+1\)
\(=2\left(9k^2+12k+4\right)+1\)
\(=18k^2+24k+8+1=18k^2+24k+9=3\left(6k^2+8k+3\right)\) ⋮3
=>Loại
Bài 1
a) Cho \(p\) là số nguyên tố lớn hơn 3. Chứng minh rằng \(8 p + 1\) là số nguyên tố. Chứng minh \(4 p + 1\) là hợp số.
Chứng minh \(8 p + 1\) là số nguyên tố:
- Ta có \(p\) là số nguyên tố lớn hơn 3, vậy \(p \geq 5\).
- Xét biểu thức \(8 p + 1\). Ta sẽ thử một số giá trị của \(p\):
- Nếu \(p = 5\), ta có:
\(8 p + 1 = 8 \left(\right. 5 \left.\right) + 1 = 41\)
\(41\) là số nguyên tố. - Nếu \(p = 7\), ta có:
\(8 p + 1 = 8 \left(\right. 7 \left.\right) + 1 = 57\)
\(57\) không phải là số nguyên tố vì \(57 = 3 \times 19\). - Nếu \(p = 11\), ta có:
\(8 p + 1 = 8 \left(\right. 11 \left.\right) + 1 = 89\)
\(89\) là số nguyên tố.
- Nếu \(p = 5\), ta có:
Vậy, không phải mọi \(p\) thỏa mãn điều kiện bài toán đều tạo ra \(8 p + 1\) là số nguyên tố. Ta không thể chứng minh điều này với mọi \(p\). Nên bài toán này có thể cần điều kiện bổ sung hoặc có thể có lỗi trong cách đặt bài toán.
Chứng minh \(4 p + 1\) là hợp số:
- Ta có \(p \geq 5\), vậy xét \(4 p + 1\):
- Nếu \(p = 5\), ta có:
\(4 p + 1 = 4 \left(\right. 5 \left.\right) + 1 = 21\)
\(21\) là hợp số vì \(21 = 3 \times 7\). - Nếu \(p = 7\), ta có:
\(4 p + 1 = 4 \left(\right. 7 \left.\right) + 1 = 29\)
\(29\) là số nguyên tố. - Nếu \(p = 11\), ta có:
\(4 p + 1 = 4 \left(\right. 11 \left.\right) + 1 = 45\)
\(45\) là hợp số vì \(45 = 3 \times 15\).
- Nếu \(p = 5\), ta có:
Như vậy, không phải mọi giá trị của \(p\) thỏa mãn điều kiện \(p\) đều tạo ra \(4 p + 1\) là hợp số. Ta không thể chứng minh điều này cho mọi \(p\) mà không có điều kiện bổ sung.
b) Chứng minh \(p\) và \(2 p^{2} + 1\) là các số nguyên tố. Hỏi \(7 p + 2\) là số nguyên tố hay hợp số?
Giả sử \(p\) là số nguyên tố và \(2 p^{2} + 1\) là số nguyên tố. Ta sẽ thử một số giá trị của \(p\).
- Nếu \(p = 5\), ta có:
\(2 p^{2} + 1 = 2 \left(\right. 5 \left.\right)^{2} + 1 = 2 \left(\right. 25 \left.\right) + 1 = 51\)
\(51\) không phải là số nguyên tố vì \(51 = 3 \times 17\).
Như vậy, không phải mọi \(p\) thỏa mãn điều kiện bài toán đều tạo ra \(2 p^{2} + 1\) là số nguyên tố. Ta không thể chứng minh điều này với mọi giá trị của \(p\).
Bài 2
Cho số tự nhiên \(n > 2\) và không chia hết cho 3. Chứng minh rằng hai số \(n^{2} - 1\) và \(n^{2} + 1\) không thể đồng thời là số nguyên tố.
Chứng minh:
- Gọi \(p = n^{2} - 1\) và \(q = n^{2} + 1\).
- Ta biết \(p = n^{2} - 1 = \left(\right. n - 1 \left.\right) \left(\right. n + 1 \left.\right)\).
- Nếu \(n\) là số nguyên lớn hơn 2, thì \(p = n^{2} - 1\) sẽ là một tích của hai số nguyên lớn hơn 1, do đó \(p\)là hợp số, không phải là số nguyên tố.
- Do đó, \(p = n^{2} - 1\) không thể là số nguyên tố.
- Tiếp theo, ta xét \(q = n^{2} + 1\).
- \(n^{2} + 1\) có thể là số nguyên tố hoặc hợp số tùy thuộc vào giá trị của \(n\), nhưng không thể có cả \(p = n^{2} - 1\) và \(q = n^{2} + 1\) cùng là số nguyên tố.
Kết luận: Do \(p = n^{2} - 1\) không thể là số nguyên tố, nên \(n^{2} - 1\) và \(n^{2} + 1\) không thể đồng thời là số nguyên tố.
Bài 3
Ta gọi \(p\) và \(q\) là hai số nguyên tố liên tiếp nếu giữa \(p\) và \(q\) không có số nguyên tố nào khác (ví dụ: \(7\) và \(11\) là hai số nguyên tố liên tiếp). Tìm ba số nguyên tố liên tiếp \(p\), \(q\), \(r\) sao cho \(p^{2} + q^{2} + r^{2}\) cũng là số nguyên tố.
Giải:
Ta sẽ thử một số bộ ba số nguyên tố liên tiếp nhỏ:
- Nếu \(p = 3\), \(q = 5\), \(r = 7\), ta có:
\(p^{2} + q^{2} + r^{2} = 3^{2} + 5^{2} + 7^{2} = 9 + 25 + 49 = 83\)
\(83\) là số nguyên tố.
Vậy ba số nguyên tố liên tiếp \(p = 3\), \(q = 5\), \(r = 7\) thỏa mãn điều kiện bài toán, vì \(p^{2} + q^{2} + r^{2} = 83\) là số nguyên tố.
Kết luận: Ba số nguyên tố liên tiếp \(p = 3\), \(q = 5\), \(r = 7\) sao cho \(p^{2} + q^{2} + r^{2} = 83\) là số nguyên tố.


ta có:1/22+1/32+....+1/1002<1/1x2+1/2x3+...+1/99x100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100
Vì A<1-1/100 nên A ko phải là số tự nhiên

a)Nếu n là số lẻ thì n^2 là số lẻ,n^2+n là số lẻ,n^2+n+1 là số chẵn
Nếu n là số chẵn thì n^2 là số chẵn,n^2+n là số chẵn,n^2+n+1 là số lẻ(đề ghi sai)
a, Nếu n là số lẻ thì \(n^2\) lẻ suy ra \(n^2+n\) chẵn (lẻ cộng lẻ ra chẵn nha bạn)
suy ra \(n^2+n+1\) lẻ
Nếu n là số chẵn thì \(n^2\) chẵn suy ra \(n^2+n\) chẵn (chẵn cộng chẵn vẫn ra chẵn nha bạn)
suy ra \(n^2+n+1\) lẻ

Để quy đồng mẫu các phân số trong tổng A = 1/2 + 1/3 + 1/4 + ... + 1/100, ta chọn mẫu chung là tích của 2^6 với các thừa số lẻ nhỏ hơn 100. Gọi k1,k2,... k100 là các thừa số phụ tương ứng, tổng A có dạng: B=(k1+k2+k3+...+k100)/(2^6.3.5.7....99).
Trong 100 phân số của tổng A chỉ có duy nhất phân số 1/64 có mẫu chứa 2^6 nên trong các thừa số phụ k1,k2,...k100 chỉ có k64 (thừa số phụ của 1/64) là số lẻ (bằng 3.5.7....99), còn các thừa số phụ khác đều chẵn (vì chứa ít nhất một thừa số 2). Phân số B có mẫu chia hết cho 2 còn tử không chia hết cho 2, do đó B (tức là A) không thể là số tự nhiên.
Ngoài ra với trường hợp tổng quát, hạng tử cuối là 1/n (n là số tự nhiên), ta chọn mẫu chung là 2^k với các thừa số lẻ không vượt quá n, trong đó k là số lớn nhất mà 2^k <= n. Chỉ có thừa số phụ của 1/2^k là số lẻ còn các thừa số phụ khác đều chẵn.
Còn cách giải khác nữa cùng trong sách Nâng cao và phát triển Toán 6 tập hai bạn có thể tham khảo thêm nhé. Chúc bạn học giỏi!
Xét 1/2 + 1/3 + 1/4
1/2 + 1/4 = (2+4)/(2.4) = 2.3/[(3-1)(3+1)] = 2.3/(3^2 - 1) > 2.3/3^2 = 2/3 = 2.(1/3)
---> 1/2+1/3+1/4 > 3.(1/3) = 1 (1)
Lại xét 1/5 + 1/6 + ... + 1/9 + ... + 1/13
1/8+1/10 = (8+10)/(8.10) = 2.9/(9^2 - 1) > 2.9/9^2 = 2/9 = 2.(1/9)
Tương tự cm được 1/7+1/11 > 2.(1/9) ; 1/6+1/12 > 2.1/9; ...; 1/5+1/13 > 2.1/9
---> 1/5+1/6+ ... + 1/13 > 9.(1/9) = 1 (2)
Tiếp tục xài chiêu đó, cm được 1/14+1/15+ ... + 1/38 > 25.(1/25) = 1 (3)
(1),(2),(3) ---> a > 3 (*)
Mặt khác
1/2 + 1/3 + 1/6 = 1 (4)
1/4 + 1/5 + 1/20 = 1/2 (5)
1/7 + 1/8 + 1/9 < 3.(1/7) = 3/7 (6)
1/10+1/11+ ...+1/14 < 5.(1/10) = 1/2 (7)
1/15+1/16+ ...+1/19 < 5.(1/15) = 1/3 (8)
1/21+1/22+ ...+1/26 < 6.(1/21) = 2/7 (9)
1/27+1/28+ ...+1/50 < 24.(1/27) = 8/9 (10)
Cộng (4),(5),(6),(7), (8),(9),(10) ---> a < 2 + 5/7 + 11/9 < 2 + 7/9 + 11/9 = 4 (**)
Từ (*) và (**) ---> 3 < c < 4 ---> a ko phải là số tự nhiên.
====================================
Cách khác (tổng quát hơn, trừu tượng hơn)
Quy đồng mẫu số :
Chọn mẫu số chung là M = BCNN(2;3;4;...;50) = k.2^5 = 32k (k là số tự nhiên lẻ)
Đặt T2 = M/2; T3 = M/3; ...; T50 = M/50
---> a = (T2+T3+ ... + T50) / M
Chú ý rằng T2,T3,...,T50 đều chẵn, chỉ riêng T32 = M/32 = k là lẻ, còn M chẵn
---> T2+T3+...T50 lẻ.Số lẻ ko thể là bội của số chẵn ---> c ko phải là số tự nhiên.
ta có :
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\) (1)
Gọi T là tích tất cả các số lẻ nhỏ hơn 50 :
\(T=1.3.5....49\)
Nhân 2 vế của (1) với \(2^4T\) ta được :
\(A.2^4T=\frac{2^4T}{2}+\frac{2^4T}{3}+\frac{2^4T}{4}+...+\frac{2^4T}{49}+\frac{2^4T}{50}\) (2)
Dễ thấy tất cả các số hạng ở vế phải của (2) trừ số hạng \(\frac{2^4T}{2^5}\) đều là số tự nhiên
\(\Rightarrow\) Vế phải có tổng không phải là số tự nhiên
Do đó , A không phải là số tự nhiên