Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2^2=4
1/3^2<1/2.3
.................
1/100^2<1/99.100
A<1/4+1/2.3+...+1/99.100
A<1/4+1/2-1/100
A<1/4<3/4
Vậy A<3/4(dpcm).CHÚC BẠN HỌC TỐT!
a) Giải
Đặt \(M=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\)
\(\Rightarrow A< A.M\)
hay \(A< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\right)\)
\(\Rightarrow A< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}.\dfrac{6}{7}...\dfrac{98}{99}.\dfrac{99}{100}\)
\(\Leftrightarrow A< \dfrac{1.2.3.4.5.6...98.99}{2.3.4.5.6.7...99.100}\)
\(\Rightarrow A< \dfrac{1}{100}< \dfrac{1}{10}\)
Vậy \(A< \dfrac{1}{10}\)
Kiyoko Vũ
a, xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6
ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => A < 6
b, Câu hỏi của trịnh quỳnh trang - Toán lớp 6 - Học toán với OnlineMath
Nhận thấy \(\)\(\dfrac{1}{1.1!}=1\); \(\dfrac{1}{2.2!}=\dfrac{1}{4}\)
Đặt \(P=\dfrac{1}{3.3!}+...+\dfrac{1}{2013.2013!}\)
\(P=\dfrac{1}{3.1.2.3}+...+\dfrac{1}{2013.1.2...2013}\)
\(P< \dfrac{1}{1.2.3}+...+\dfrac{1}{2011.2012.2013}\)
\(P< \dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+...+\dfrac{1}{2011.2012}-\dfrac{1}{2012.2013}\right)\)
\(P< \dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2012.2013}\right)=\dfrac{1}{4}-\dfrac{1}{2.2012.2013}\)
\(P< \dfrac{1}{4}\)
\(A< \dfrac{1}{4}+\dfrac{1}{4}+1=\dfrac{3}{2}\left(đpcm\right)\)
a,Vế trái:
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{2014}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1007}\right)\)
\(=\dfrac{1}{1008}+\dfrac{1}{2009}+...+\dfrac{1}{2014}\)
b,chưa có câu trả lời, sorry nha
Chứng minh rằng:
\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{100^2}\)<1
Ta có: 1/22 < 1/ 1.2
1/32 < 1/2.3
1/42 < 1/3.4
....
1/ 1002 < 1/ 99.100
Nên A< 1/1.2+1/2.3+...+1/99.100
= 1- 1/2+1/2 -1/3+1/3 -1/4+...+1/99-1/100
= 1- 1/100
<1 Vậy A><1. >
Ma 1 > 1/100
Vay…
\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}221+321+421+...+10021<1.21+2.31+3.41+...+99.1001
=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1=1−21+21−31+31−41+...+991−1001=1−1001<1