Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 Bài này sai đề bạn nhé!!!!
Bài 2:
a) 74n = (74)n =2401n
Mà 2401n luôn có tận cùng bằng 1
\(\Rightarrow\)2401n - 1 tận cùng là 0 nên chia hết cho 5
b)34n + 1 = (34)n . 3 = 81n . 3
Mà (......1)n luôn có tận cùng là 1
\(\Rightarrow\)(......1)n .3 tận cùng là 3
\(\Rightarrow\)34n + 1 + 2 tận cùng là 5 chia hết cho 5
c)Câu này hình như sai đề bạn nhé!!!
d)92n + 1 = (92)n . 9 = 81n .9
Mà 81n luôn có tận cùng là 1
\(\Rightarrow\) 81n . 9 có tận cùng là 9
\(\Rightarrow\)92n + 1 + 1 có tận cùng là 0 chia hết cho 10
Bạn tự trình bày lại để theo cách của bạn và tick cho mình nhé!!!
4A=4+4^2+4^3+.....+4^60
4A-A=(4+4^2+...+4^60)-(1+4+4^2+...+4^59)
3A=4^60-1
A=\(\frac{4^{60}-1}{3}\)
1) ta có A= 4+4^2 +4^3 +4^4 +...+4^120 =( 4+ 4^2 )+ (4^3+4^4) +...+ (4^119+4^120)
=4.(1+4) +4^3.(1+4) +...+4^119.(1+4) = (1+4).(4+4^3+...+4^119) =5 .(4+4^3+..+4^119)
mà 4+4^3+4^119 chia hết cho 4 , UCLN(4,5)=1 =>5.(4+4^3+...+4^119) chia het cho 20 => A chia het cho 20
2) ta coA= 4+4^2+4^3 +...+4^120 = (4+4^2+4^3) +...+ (4^118+4^119+4^120)
=4.(1+4+4^2)+...+4^118.(1+4+4^2) = 21.( 4+..+4^118) chia het cho 21 => A chia het cho 21
do A chia het cho 20, 21 mà UCLN(20,21) =1 nên A chia hết cho 20 .21 => A chia hết cho 420
Ta có: A=1+4+42+…+42012
=>A=(1+4+42)+…+(42010+42011+42012)
=>A=1.(1+4+42)+…+42010.(1+4+42)
=>A=1.21+…+42010.21
=>A=(1+…+42010).21 chia hết cho 21
Vậy A chia hết cho 21
a) C = 1 + 3 + 32 + 33 + ... + 311
C = 30 + 3 + 32 + 33 + ... + 311
C = ( 30 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 39 + 310 + 311 )
C = ( 30 + 3 + 32 ) + 33 . ( 30 + 3 + 32 ) + ... + 39 . ( 30 + 3 + 32 )
C = 13 + 33 . 13 + ... + 39 . 13
C = 13 . ( 1 + 33 + ... + 39 ) \(⋮\) 13 ( đpcm )
b) C = 1 + 3 + 32 + 33 + ... + 311
C = 30 + 3 + 32 + 33 + ... + 311
C = ( 30 + 3 + 32 + 33 ) + ( 34 + 35 + 36 + 37 ) + ( 38 + 39 + 310 + 311 )
C = ( 30 + 3 + 32 + 33 ) + 34 . ( 30 + 3 + 32 + 33 ) + 38 . ( 30 + 3 + 32 + 33 )
C = 40 + 34 . 40 + 38 . 40
C = 40 . ( 1 + 34 + 38 ) \(⋮\) 40 ( đpcm )
c) A = 4 + 42 + 43 + ... + 423 + 424
A = ( 4 + 42 ) + ( 43 + 44 ) + ... + ( 423 + 424 )
A = ( 4 + 42 ) + 42 . ( 4 + 42 ) + ... + 422 . ( 4 + 42 )
A = 20 + 42 . 20 + ... + 422 . 20
A = 20 . ( 1 + 42 + ... + 422 ) \(⋮\) 20 ( đpcm )
d) A = 4 + 42 + 43 + ...+ 423 + 424
A = ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + .... + ( 422 + 423 + 424 )
A = ( 4 + 42 + 43 ) + 43 . ( 4 + 42 + 43 ) + ... + 421 . ( 4 + 42 + 43 )
A = 84 + 43 . 84 + ... + 421 . 84
A = 84 . ( 1 + 43 + ... + 421 )
Vì 81 \(⋮\) 9
=> A = 84 . ( 1 +43 + ... + 421 ) \(⋮\) 21 ( đpcm )
e) A = 4 + 42 + 43 + ... + 423 + 424
A = ( 4 + 42 + 43 + 44 + 45 + 46 ) + ... + ( 417 + 418 + 419 + 421 + 422 + 423 + 424 )
A = ( 4 + 42 + 43 + 44 + 45 + 46 ) + ...+ 416 . ( 4 + 42 + 43 + 44 + 45 + 46 )
A = 5460 + ... + 416 . 5460
A = 5460 . ( 1 + ... + 416 )
Vì 5460 \(⋮\) 420
=> A = 5460 . ( 1 + ... + 416 ) \(⋮\) 420 ( đpcm )
Giải:
*A = 4 + 42 + 43 + ... + 423 + 424
A = (4 + 42) + (43 + 44) + ... + (423 + 424)
A = 1 . (4 + 42) + 42 . (4 + 42) + ... + 422 . (4 + 42)
A = 1 . 20 + 42 . 20 + ... + 422 . 20
A = 20 . (1 + 42 + ... + 422)
Vì 20 \(⋮\)20 nên suy ra 20 . (1 + 42 + ... + 422) \(⋮\)20
=> A \(⋮\)20
Vậy A \(⋮\)20
*A = 4 + 42 + 43 + ... + 423 + 424
A = (4 + 42 + 43) + (44 + 45 + 46) + ... + (422 + 423 + 424)
A = 4 . (1 + 4 + 42) + 44 . (1 + 4 + 42) + ... + 422 . (1 + 4 + 42)
A = 4 . 21 + 44 . 21 + ... + 422 . 21
A = 21 . (4 + 44 + ... + 422)
Vì 21\(⋮\)21 nên suy ra 21 . (4 + 44 + ... + 422) \(⋮\)21
=> A \(⋮\)21
Vậy A \(⋮\)21
*A = 4 + 42 + 43 + ... + 423 + 424
A = (4 + 42 + 43 + 44 + 45 + 46) + (47 + 48 + 49 + 410 + 411 + 412) + ... + (419 + 420 + 421 + 422 + 423 + 424)
A = 1 . (4 + 42 + 43 + 44 + 45 + 46) + 46 . (4 + 42 + 43 + 44 + 45 + 46) + ... + 418 . (4 + 42 + 43 + 44 + 45 + 46)
A = 1 . 5460 + 46 . 5460 + ... + 418 . 5460
A = 5460 . (1 + 46 + ... + 418)
Vì 5460 \(⋮\)420 nên suy ra 5460 . (1 + 46 + ... + 418) \(⋮\)420
=> A \(⋮\)420
Vậy A \(⋮\)420.
Chúc bạn học tốt!
a)
Ta có :A=275=27.27.27.27.27 Ta có :B=2433=243.243.243
=(3.3.3).(3.3.3)...(3.3.3)(có 5 nhóm) =(3.3.3.3.3).(3.3.3.3.3)...(3.3.3.3.3)(có 3 nhóm)
=3.3.3.3.3...3(15 thừa số 3) =3.3.3.3.3...3.3(có 15 thừa số 3)
=315 =315
Mà315=315
Nên 275=2433
=>A=B
b)Ta có:A=85=8.8.8.8.8 B=27
=(2.2.2).(2.2.2)...(2.2.2)(có 5 nhóm)
=2.2.2.2.2.2..2(có 15 thừ số 2)
Mà 215>27
Nên 85>27
=>A>B
c)(bạn tự tìm người giải ,mình bó)
d)A=1+2+22+23+24+..+21999 B=22000
2.A=2.(1+2+22+23+...+21999)
2.A=2+22+23+24+...+21999+22000
Ta có:2.A-A=(2+22+23+24+...+22000) - (1+2+22+23+...+21999)
A=22000-1
Mà 22000-1<22000
Nên A<B
Câu2:
A=4+42+43+44+...+460
4.A=4.(4+42+43+...+460)
4.A=42+43+44+...+460+461
4.A-4=(42+43+44+...+461)-(4+42+43+...+460)
A=\(\frac{4^{61}-4}{3}\)
bài 3 thì mình quên cách làm rồi để mai mình xem vở chỉ cho
CM: A ⋮ 5
A = 1 + 4 + 42 + 43 + ... + 460
A = (1 + 4) + (42 + 43) + ... + (459 + 460)
A = 5 + 42 . (1 + 4) + ... + 459 . (1 + 4)
A = 5 + 42 . 5 + ... + 459 . 5
A = 5 . (1 + 42 + ... + 459) ⋮ 5
Vậy A ⋮ 5
CM: A ⋮ 21
A = 1 + 4 + 42 + 43 + ... + 460
A = (1 + 4 + 42) + (43 + 44 + 45) + ... + (458 + 459 + 460)
A = 21 + 43 . (1 + 4 + 42) + ... + 458 . (1 + 4 + 42)
A = 21 + 43 . 21 + ... + 458 . 21
A = 21 . (1 + 43 + ... + 458) ⋮ 21
Vậy A ⋮ 21