Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/GỌI ƯCLN CỦA A VÀ B LÀ D
ƯCLN (4n+3;5n+1)=D
suy ra {4n+3 chia hết cho D
{5n+1 chia hết cho D
suy ra{5(4n+3) chia hết cho D
{4(5n+1) chi hết cho D
suy ra 5(4n+3)-4(5n+1) chia hết cho D
suy ra (20n+3)-(20n+1) chia hết cho D
suy ra 3 - 1 chia hết cho D
suy ra 2 chia hết cho D
SUY RA D thuộc Ư(2)
suy ra D =2 (tm đề bài)
VẬY ƯCLN của (a;b) = 2
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt
a) Gọi ƯCLN (2n + 5 ; 3n + 7) là d. Ta có :
2n + 5 chia hết cho d => 3(2n + 5) = 6n +15 chia hết cho d
3n + 7 chia hết cho d => 2 (3n + 7) = 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau. (đpcm)
b) Gọi ƯCLN (2n + 3 ; 3n + 4) là c. Ta có :
2n + 3 chia hết cho c => 3(2n + 3) = 6n + 9 chia hết cho c
3n + 4 chia hết cho c => 2(3n + 4) = 6n + 8 chia hết cho c
=> (6n + 9) - (6n + 8) chia hết cho c.
=> 1 chia hết cho c
=> c = 1
Vậy 2n + 3 và 3n + 4 là 2 số nguyên tố cùng nhau (đpcm)
Li-ke cho mình nhé Phạm Thị Thủy Diệp xinh đẹp!
\(a=\frac{n\left(n+1\right)}{2}\)
2n và (2n+1) là nguyên tố cùng nhau vì là 2 số tự nhiên liên tiếp (hoặc có thể xét hiệu để chứng minh)
Ta có UCLN (2n; 2n+1)=1 (a)
Rõ ràng 2n+1 không chia hết cho 2, (a) => UCLN (n; 2n+1) = 1 (1)
2n+2 và 2n+1 cũng nguyên tố cùng nhau vì là 2 số tự nhiên liên tiếp; và 2n+2 = 2(n+1) => UCLN (n+1; 2n+1) = 1 (2)
Từ (1) và (2) => UCLN ( n(n+1) ; 2n+1) = 1 => UCLN ( n(n+1)/2 ; 2n+1) = 1 hay UCLN (a;b) = 1
Nên a và b nguyên tố cùng nhau. ĐPCM