Cho A = (-1) + (-2) + 3 + 4 + (-5) + (-6) + 7 + 8 + … + (-97) + (-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=(-1)+(-2)+3+4+...+(-97)+(-98)+99+100

=(-1-2+3+4)+(-5-6+7+8)+...+(-97-98+99+100)

=4+4+...+4

=4x25=100

7 tháng 5 2024

102

 

1 tháng 2 2016

Từ 1 đến 999 có 300 chữ số 1 Vì hàng đơn vị có 100 chữ hàng chục có 100 chữ và trăm có 100 chữ số 1. từ 1000 đến 1999 có 1300 chữ số  1. vì hàng nghìn có 1000 chữ số 1, 3 hàng :trăm, chục, đơn vị có 300 chữ số 1. Từ 2000 đến 2014 có 7 chữ số 1. Vậy tổng cộng có 1607 chữ số 1

Vậy Trong dãy đó có tất cả  1607 chữ số 1.

21 tháng 4 2016

Bài 2 

a) 4^100 = (2^2)^100= 2^200

Mà 2^202 > 2^200 => 4^100 < 2^202                          

b)Ta có: 31^5 <32^5 = (2^5)^5 = 2^25       (1)

               17^7 > 16^7= (2^4)^7= 2^28        (2)

                Từ (1) và (2) => 31^5<17^7

1 tháng 2 2016

Coi 2 số cần tìm là ab và cd  (ab>cd)

ta có hiệu hai số là ab - cd =16

và abcd +cdab=5454

abx100+cd+cdx100+ab=5454

=>abx101+cdx101=5454

=>101x(ab+cd)=5454

=>ab+cd=5454:101

=>ab+cd=54

vậy tổng ab+cd=54

=>ab=(54 +16):2=35

27 tháng 4 2016

TA CÓ: 

                   = 1+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+.....+\(\frac{1}{49^2}\)+\(\frac{1}{50^2}\)<1+ \(\frac{1}{1\times2}\)+\(\frac{1}{2\times3}\)+....+\(\frac{1}{49\times50}\)

                                                             = 1+ 1- \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + ..... + \(\frac{1}{49}\) - \(\frac{1}{50}\)

                                                             = 1+ 1 - \(\frac{1}{50}\)

                                                             = 1+ \(\frac{49}{50}\) < 2

 Chứng tỏ A < 2

11 tháng 4 2017

ukm

8 tháng 4 2016

khó quá bạn ơi!lolang

Áp dụng công thức k/n*m=k/n-k/m trong đó n-m=k hoặc m-n=k

thế vào ta có

A=1/2*3+1/4*5+...+1/98*99

tớ biết tới đó thôi để từ từ tớ suy nghĩ rồi trả lời cho

 

19 tháng 3 2016

a)Đặt A= \(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{8}\) - \(\frac{1}{16}\) + \(\frac{1}{32}\) - \(\frac{1}{64}\) => A=\(\frac{1}{2^1}\) - \(\frac{1}{2^2}\) + \(\frac{1}{2^3}\) - \(\frac{1}{2^4}\) + \(\frac{1}{2^5}\) - \(\frac{1}{2^6}\)

=> 2A= 1-\(\frac{1}{2^1}\) + \(\frac{1}{2^2}\) - \(\frac{1}{2^3}\) + \(\frac{1}{2^4}\) - \(\frac{1}{2^5}\) 

=> 3A= 1- \(\frac{1}{2^6}\) <1 => A<\(\frac{1}{3}\) => đpcm.

b) Đặt B=\(\frac{1}{3}\) - \(\frac{2}{3^2}\) + \(\frac{3}{3^3}\) - \(\frac{4}{3^4}\) +..+ \(\frac{99}{3^{99}}\) - \(\frac{100}{3^{100}}\) 

=> 3B=1-\(\frac{2}{3}\) + \(\frac{3}{3^2}\) - \(\frac{4}{3^3}\) +...+\(\frac{99}{3^{98}}\) - \(\frac{100}{3^{99}}\)

=> 4B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) - \(\frac{100}{3^{99}}\) < 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) (1)

Đặt B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) 

=> 3B= 3-1+\(\frac{1}{3}\) - \(\frac{1}{3^2}\) + \(\frac{1}{3^3}\) - \(\frac{1}{3^4}\) +...+ \(\frac{1}{3^{98}}\)

=> 4B= 3-\(\frac{1}{3^{99}}\) <3 => B<\(\frac{3}{4}\) (2)

=> 4A<B<\(\frac{3}{4}\) => A<\(\frac{3}{16}\) => đpcm.

 

 

thì tính tổng tử M áp dụng công thức thì tử M=

101*(101+1)/2=5151

mẫu M=

(101-100)+(99-98)+...+(3-2)+(1-0)(có 51 cặp số)

=1+1+1+...+1+1(có 51 cặp số)

=1*51

=51

M=5151/51

M=101

17 tháng 3 2017

sai bet pai cong 50 so hang

h

14 tháng 4 2016

\(\frac{99}{98}-\frac{98}{97}-\frac{1}{97x98}\)

\(=\frac{99}{98}-\frac{98}{97}-\left(\frac{1}{97}-\frac{1}{98}\right)\)

\(=\frac{99}{98}-\frac{98}{97}-\frac{1}{97}+\frac{1}{98}=\left(\frac{99}{98}+\frac{1}{98}\right)+\left(-\frac{98}{97}-\frac{1}{97}\right)\)

\(=\frac{100}{98}-\frac{99}{97}=-\frac{1}{4753}\)

14 tháng 2 2016

A=1+4+42+43+...+499

=>4A=4+42+43+44+...+4100

=>4A-A=(4+42+43+44+...+4100)-(1+4+42+43+...+499)

=>3A=4100-1 

=>A=\(\frac{4^{100}-1}{3}\) < 4100

=>A<B

 

14 tháng 2 2016

     \(A=1+4+4^2+4^3+...+4^{99}\)

=> \(4A=4+4^2+4^3+4^4+...+4^{100}\)

=> \(4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\)

=> \(3A=4^{100}-1\)

=> \(A=\frac{4^{100}-1}{3}\)

Ta có : \(B=4^{100}\)   =>  \(\frac{B}{3}=\frac{4^{100}}{3}\)

Vì    \(4^{100}-1<4^{100}\)     =>   \(\frac{4^{100}-1}{3}<\frac{4^{100}}{3}\)    =>  \(A<\frac{B}{3}\)   (đpcm)