K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2016

\(2A=2+2^2+2^3+2^4+...+2^{2017}\)

\(A=2A-A=2^{2017}-1\)

=> A<B

8 tháng 12 2018

\(a)\left|x\right|=2017\Rightarrow\hept{\begin{cases}x=-2017\\x=2017\end{cases}\Rightarrow}x=\pm2017\)

\(b)A=1+2^1+2^2+...+2^{2017}\)

\(2A=2+2^2+2^3+...+2^{2018}\)

\(2A-A=(2+2^2+2^3+...+2^{2018})-(1+2^2+2^3+...+2^{2017})\)

\(A=2^{2018}-1\)

...

Rồi còn khúc để bạn so sánh đó

16 tháng 7 2019

TL mà cảm ơn bạn nhé

15 tháng 12 2016

a) Ta có:

S = 1 + 5 + 9 + 13 + ... + 2013 + 2017

S = (2017 + 1)[(2017 - 1) : 4 + 1] : 2

S = 2018.505 : 2

S = 1019090 ÷ 2

S = 509545

b) Ta có:

A = 1 + 3 + 32 + 33 + ... + 32016

3A = 3 + 32 + 33 + 34 + ... + 32017

3A - A = (3 + 32 + 33 + 34 + ... + 32017) - (1 + 3 + 32 + 33 + ... + 32016)

2A = 32017 - 1

A = \(\frac{3^{2017}-1}{2}\)

=> B - A = 32017 - \(\frac{3^{2017}-1}{2}\)

=> B - A = 32017 - \(\frac{3^{2017}}{2}-\frac{1}{2}\)

=> B - A = \(\frac{3^{2017}}{2}-0,5\)

 

18 tháng 2 2020

\(A=\frac{1}{2018}+\frac{2}{2017}+...+\frac{2017}{2}+2018\)

\(=\left(\frac{1}{2018}+1\right)+\left(1+\frac{2}{2017}\right)+...+\left(\frac{2017}{2}+1\right)+1\)(2018 số hạng 1)

\(=\frac{2019}{2018}+\frac{2019}{2017}+...+\frac{2019}{2}+\frac{2019}{2019}=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)\)

Mà \(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)

=> Khi đó : \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)

21 tháng 2 2021

??????????????????????????????????????????????????????????????????????????????????????????????????????????????

a) 2^6 và 8^2;

8^2 = ( 2^4)^2 = 2^8 

 2^6 < 8^2

5^3 và 3^5 = 125 và 243 = 125 < 243

 3^2 và 2^3 = 9 và 8 = 9 > 8

2^6 và 6^2 

 6^2 = ( 

10 tháng 10 2018

Ta có: A =  1 + 2 + 2+ 2+ .... + 22016 

    =>  2A = 2 + 22 + 23 + 24 + ... + 22017

    =>  2A - A = (2 + 22 + 23 + 24 + ... + 22017) - (1 + 2 + 2+ 2+ .... + 22016 )

    =>  A = 22017 - 1

Mà 22017 - 1 > 22017 - 2    => A > B.

9 tháng 5 2019

\(\frac{B}{A}=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2016}+\frac{1}{2017}}\)

\(\frac{B}{A}=\frac{\left(\frac{2016}{1}+1\right)+\left(\frac{2015}{2}+1\right)+...+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(\frac{B}{A}=\frac{\frac{2017}{1}+\frac{2017}{2}+...+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(\frac{B}{A}=\frac{2017\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}=2017\div\frac{1}{2017}=4068289\)