Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)
2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)
3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)
áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)
1.
Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)
Áp dụng bất đẳng thức Côsi cho 2 số dương
\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)
\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)
Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)
2.
\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)
Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5
\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)
Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5
\(A=\frac{1}{a^3+b^3}+\frac{1}{a^2b}+\frac{1}{ab^2}\ge\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)}+\frac{4}{ab\left(a+b\right)}\)
\(\ge\left(\frac{1}{a^2-ab+b^2}+\frac{1}{ab}+\frac{1}{ab}+\frac{1}{ab}\right)+\frac{1}{ab}\)
\(\ge\frac{\left(1+1+1+1\right)^2}{\left(a+b\right)^2}+\frac{1}{ab}\ge\frac{16}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{4}}\ge16+4=20\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
Áp dụng BĐT AM-GM cho các số dương ta có:
\(\frac{1}{2x}+2x\geq 2\)
\(\frac{9}{y}+y\geq 6\)
\( \frac{7}{3}(x+y)\geq \frac{7}{3}.\frac{7}{2}=\frac{49}{6}\)
Cộng theo vế các BĐT trên ta có:
\(P\geq \frac{97}{6} hay P_{\min}=\frac{97}{6} \)
Dấu "=" xảy ra khi
\((x,y)=(\frac{1}{2}, 3)\)
Áp dụng bất đẳng thức AM-GM kết hợp giả thiết x + y >= 7/2 ta có :
\(A=\frac{13}{3}x+\frac{10}{3}y+\frac{1}{2x}+\frac{9}{y}=\left(2x+\frac{1}{2x}\right)+\left(y+\frac{9}{y}\right)+\frac{7}{3}\left(x+y\right)\)
\(\ge2\sqrt{2x\cdot\frac{1}{2x}}+2\sqrt{y\cdot\frac{9}{y}}+\frac{7}{3}\cdot\frac{7}{2}=2+6+\frac{49}{6}=\frac{97}{6}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x,y>0\\2x=\frac{1}{2x};y=\frac{9}{y}\\x+y=\frac{7}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=3\end{cases}}\)
Ta có: \(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Rightarrow x^2+y^2\ge2xy\)
Tương tự: \(y^2+z^2\ge2yz\); \(x^2+z^2\ge2xz\)
Cộng từng vế của các BDDT trên:
\(2\left(xz+yz+xy\right)\le2\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow xy+yz+xz\le x^2+y^2+z^2\)
\(\Leftrightarrow3xy+3yz+3xz\le x^2+y^2+z^2+2xy+2yz+2xz\)
\(\Leftrightarrow3xy+3yz+3xz\le\left(x+y+z\right)^2\)
\(\Leftrightarrow3xy+3yz+3xz\le3^2=9\)
\(\Leftrightarrow xy+yz+xz\le3\)
Vậy \(D_{max}=3\Leftrightarrow x=y=z\)
Áp dụng BĐT Cauchy - Schwarz:
\(\left(x^2+y^2+z^2\right)\left(1+1+1\right)\)
\(=\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3^2=9\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
Vậy \(C_{min}=3\Leftrightarrow x=y=z=1\)
dăt tinh roi tinh
173,44:32 112,56:28 155,9:15
b 372,96:3 857,5:35 431,25:125
1. Vì \(x^2\ge0\left(\text{ với mọi x}\right)\)(1)
=>\(x^2+2\ge2>0\)
=>\(\left(x^2+2\right)^2>0\)(2)
Từ (1) và (2) =>\(\frac{x^2}{\left(x^2+2\right)^2}\le\frac{0}{\left(x^2+2\right)^2}=0\) hay A\(\le0\)
=> giá trị lớn nhất của A là 0, khi và chỉ khi \(x^2=0\) <=> x=0.
Áp dụng BĐT cô-si cho 2 số dương : a; \(\frac{2}{a}\):
\(a+\frac{2}{a}\ge2\sqrt{a.\frac{2}{a}}=2\sqrt{2}\)
=> \(a+\frac{2}{a}+3\ge2\sqrt{2}+3\)
=> \(P\ge2\sqrt{2}+3\)
=> GTNN của P là \(2\sqrt{2}+3\)
Dấu "=" xảy ra khi \(a=\frac{2}{a}\)hay \(a=\sqrt{2}\)
https://olm.vn/hoi-dap