\(a+\dfrac{1}{a}\ge2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2021

Áp dụng bất đẳng thức Cauchy cho số a > 0 ta có

\(a+\dfrac{1}{a}\ge2\sqrt{a.\dfrac{1}{a}}=2\forall a>0\)

Dấu "=" xảy ra ⇔ a2 = 1 ⇔ \(a=1\)

19 tháng 7 2017

bài này chỉ ở dạng trung trung thôi, có 2 cái link 1 tổng quát 2 hiệu quát ko biết giúp j dc ko

-tổng quát: Học tại nhà - Toán - Toán hay hay

-hiệu quát: Học tại nhà - Toán - (Bài Toán Thách Thức )

BĐT dạng k hay n là t ngu lắm ko giúp dc :v

19 tháng 7 2017

thanks anyway :))

có 4 cách hiểu mỗi 1 cách : >>>

NV
30 tháng 12 2018

Áp dụng BĐT: \(\dfrac{a^n+b^n}{2}\ge\left(\dfrac{a+b}{2}\right)^n\Rightarrow a^n+b^2\ge2\left(\dfrac{a+b}{2}\right)^n\):

\(\left(1+\dfrac{x}{y}\right)^{2018}+\left(1+\dfrac{y}{x}\right)^{2018}\ge2\left(\dfrac{2+\dfrac{x}{y}+\dfrac{y}{x}}{2}\right)^{2018}\ge2\left(\dfrac{2+2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}}{2}\right)^{2018}=2^{2019}\)

Dấu "=" xảy ra khi \(x=y\)

30 tháng 12 2018

phiền bạn chứng minh bổ đề lun đc không ???

15 tháng 10 2017

ÁP dụng AM-GM:

\(\sum\dfrac{a^2}{\sqrt{1-a^2}}=\sum\dfrac{a^3}{\sqrt{\left(1-a^2\right).a^2}}\ge\sum\dfrac{a^3}{\dfrac{1}{2}\left(1-a^2+a^2\right)}=2\sum a^3=2\left(đpcm\right)\)

Dấu = không xảy ra

AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Lời giải:
Do $a>b$ nên $a-b>0$

Áp dụng BĐT AM-GM với các số dương ta có:

\(a+\frac{1}{b(a-b)^2}=\frac{a-b}{2}+\frac{a-b}{2}+b+\frac{1}{b(a-b)^2}\geq 4\sqrt[4]{\frac{a-b}{2}.\frac{a-b}{2}.b.\frac{1}{b(a-b)^2}}\)

\(=4\sqrt[4]{\frac{1}{4}}=2\sqrt{2}\) (đpcm)

Dấu "=" xảy ra khi \(\frac{a-b}{2}=b=\frac{1}{b(a-b)^2}\Leftrightarrow a=3\sqrt{\frac{1}{2}}; b=\sqrt{\frac{1}{2}}\)

23 tháng 10 2018

am-gm là ra thoi bạn :v

29 tháng 1 2018

Áp dụng BĐT B.C.S:

\(\left(a+b\right)^2=\left(\sqrt{a}.\sqrt{a}+b\right)^2\le\left(a+b^2\right)\left(a+1\right)\)

\(\Rightarrow\)\(\dfrac{1}{a+b^2}\le\dfrac{a+1}{\left(a+b\right)^2}\)

CMTT:\(\dfrac{1}{b+a^2}\le\dfrac{b+1}{\left(a+b\right)^2}\)

\(\Rightarrow M\le\dfrac{a+b+2}{\left(a+b\right)^2}\)=\(\dfrac{1}{a+b}+\dfrac{2}{\left(a+b\right)^2}\)

\(a+b\ge2\Rightarrow\)\(\dfrac{1}{a+b}\le\dfrac{1}{2};\dfrac{2}{\left(a+b\right)^2}\le\dfrac{1}{2}\)

\(\Rightarrow M\le1\)

Dấu \(''=''\)xảy ra\(\Leftrightarrow a=b=1\)