\(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2015

bạn tham khảo câu hỏi tương tự nhé!

14 tháng 12 2015

Câu hỏi tương tự      

28 tháng 10 2018

Do  a < b < c < d < m < n 

=> 2c < c + d 

m< n => 2m < m+ n 

=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n) 

Do đó :

(a + c + m)/(a + b + c + d + m + n) < 1/2(đcpcm)

15 tháng 8 2017

Ta có : \(a< b< c< d< m< n\Rightarrow a+b+c< d+m+n\)

\(\Leftrightarrow2a+2b+2c< a+b+c+d+m+n\)

\(\Leftrightarrow2\left(a+b+c\right)< a+b+c+d+m+n\)

\(\Rightarrow\frac{2\left(a+b+c\right)}{a+b+c+d+m+n}< \frac{a+b+c+d+m+n}{a+b+c+d+m+n}=1\)

\(\Rightarrow\frac{a+b+c}{a+b+c+d+m+n}< \frac{1}{2}\)(đpcm)

12 tháng 9 2018

Vì a < b

    c < d

     m < n

=> b + d + m > a + c + m

=> a + b + c + d + m + n > 2. ( a + c + m )
=> \(\frac{a+c+m}{a+b+c+d+m+n}\) < \(\frac{a+c+m}{2.\left(a+c+m\right)}\)

=> \(\frac{a+c+m}{a+b+c+d+m+n}\)\(\frac{1}{2}\)

28 tháng 8 2018

ai làm đk mình k cho

28 tháng 8 2018

Ta có:  a < b     =>    2a < a + b

           c < d      =>    2c < c + d

           m < n     =>    2m < m +n

suy ra:    2 ( a + c + m)  < a + b + c + d + m + n

=>   \(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)

28 tháng 8 2019

\(\hept{\begin{cases}a< b\Rightarrow2a< a+b\\c< d\Rightarrow2c< c+d\\m< n\Rightarrow2m< m+n\end{cases}}\)

\(\Rightarrow2\left(a+c+m\right)< a+b+c+d+m+n\)

\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(đpcm\right)\)

31 tháng 5 2015

a < b => 2a < a + b  ;   c < d => 2c < c + d    ; m < n => 2m < m + n

Suy ra 2a + 2c + 2m = 2(a + c + m) < a + b + c + d + m + n. Do đó

\(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)  

22 tháng 2 2017

Ta có:

2(a+c+m )=a+a+c+c+m+m<a+b+c+d+m+n

=> \(\frac{2\left(a+c+m\right)}{a+b+c+d+m+n}< 1\)

\(\Leftrightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)

22 tháng 2 2017

Theo giải thiết đề bài ta có : : \(a< b< c< d< m< n\Rightarrow2a< a+b;2c< c+d;2m< m+n\)

\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{2\left(a+c+m\right)}{a+b+c+d+m+n}< \frac{\frac{a+b+c+d+m+n}{2}}{a+b+c+d+m+n}=\frac{1}{2}\)

Vậy \(\frac{a+c+m}{a+c+d+m+n}< \frac{1}{2}\) (đpcm)

13 tháng 7 2016

Do a < b < c < d < m < n

=> a + c + m < b + d + n

=> 2 × (a + c + m) < a + b + c + d + m + n

=> a + c + m / a + b + c + d + m + n < 1/2 ( đpcm)

13 tháng 7 2016

Do a < b < c < d < m < n

=> a + c + m < b + d + n

=> 2 × (a + c + m) < a + b + c + d + m + n

=> a + c + m / a + b + c + d + m + n < 1/2 ( đpcm)

9 tháng 9 2017

a < b \(\Rightarrow\) 2a < a + b

b < d \(\Rightarrow\) 2b < c + d

m < n \(\Rightarrow\) 2m < m + n

\(\Rightarrow\) 2a + 2b + 2m = 2 ( a + b + m ) < ( a + b + c + d + m + n ) . Do đó 

             a + b + m/a + b + c + d + m + n < 1/2 \(\Rightarrow\) ( đpcm )