Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b4 / công thức tổng quát muốn tính số đường thẳng là:
\(\dfrac{n.\left(n-1\right)}{2}=1770\)
=> n = 60
Ta chia hình vuông đề cho thành 16 hình vuông nhỏ bằng nhau (như hình vẽ)
Ta được độ dài cạnh của hình vuông nhỏ là 1
Có 33 điểm đặt vào 16 hình vuông theo nguyên lí Dirichlet
Suy ra tồn tại một hình vuông nhỏ chứa ít nhất 3 điểm
Giả sử hình vuông nhỏ đó là: ABCD (AC cắt BD tại O)
Có \(OA=\frac{AC}{2}=\frac{\sqrt{AB^2+BC^2}}{2}=\frac{\sqrt{1^2+1^2}}{2}=\frac{\sqrt{2}}{2}\)\(\Rightarrow AC=BD=\sqrt{2}\)
Giả sử 3 điểm đó trùng với 3 trong 4 đỉnh bất kì của hình vuông ABCD thì phần chung của ba hình tròn chứa toàn bộ hình vuông và như vậy đã tồn tại 3 điểm thỏa mãn yêu cầu bài toán.
Nếu trong 3 điểm có điểm nằm bên trong hình vuông thì phần chung của ba hình tròn cũng chứa toàn bộ hình vuông và như vậy đã tồn tại 3 điểm thỏa mãn yêu cầu bài toán
KL: tồn tại 3 điểm trong các điểm đã cho thỏa mãn yêu cầu bài toán.
- Nếu trong n điểm không có 3 điểm nào thẳng hàng thì số đường thẳng kẻ được là \(\dfrac{n\left(n-1\right)}{2}\) đường.
- Số đường thẳng bị giảm nếu n điểm trong đó không có 3 điểm nào thẳng hàng trở thành n điểm thẳng hàng là: \(\dfrac{n\left(n-1\right)}{2}-1\) đường.
- Số đường thẳng tạo bởi 100 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng là: \(\dfrac{100.99}{2}=4950\) đường.
- Theo đề bài ta có: \(4950-\left(\dfrac{n\left(n-1\right)}{2}-1\right)=4915\)
\(\Leftrightarrow n\left(n-1\right)=72\)
\(\Leftrightarrow n^2-n-72=0\)
Giải phương trình trên ta được \(n=9\left(n\right)\) hay \(n=-8\) (loại)
Vậy n=9.
Trong 2010 điểm đã cho, tồn tại 2 điểm A,B sao cho 2008 điểm còn lại nằm cùng phía đối với AB
Vì không có 4 điểm nào cùng thuộc một đường tròn nên ta đặt 2008 điểm còn lại lần lượt là
N1,N2,N3....,N2008
sao cho
AN1B>AN2B>AN3B>....>AN2008B
Ta vẽ đường tròn đi qua 3 điểm
A,B,N1001
Khi đó các điểm N1,N2,N3....,N1000 nằm trong đường tròn đã vẽ và 1007 điểm còn lại nằm ngoài đường tròn (đpcm)
ko chắc đâu nhoa