\(\left(\frac{C}{A}-B\right)D^{2017}\) b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2017

\(\left(Ax+B\right)\left(Cx+D\right)=A.C.x^2+\left(B.C+A.D\right)x+AD=50x^2+25x-3\)

\(\hept{\begin{cases}A.C=50\\B.C+A.D=25\\A.D=-3\end{cases}}\)do D=-1 ta tính được\(\hept{\begin{cases}A=3\\B=\frac{42}{25}\\C=\frac{50}{3}\end{cases}}\)

\(\left(\frac{C}{A}-B\right)D^{2017}=-\frac{827}{225}\)

11 tháng 2 2017

kết quả là 1

Chắc chắn 100%

12 tháng 2 2017

Ta có :

\(\left(Ax+B\right)\left(Cx+d\right)=ACx^2+\left(BC+AD\right)x+BD\)

\(=50x^2+25x-3\)

Mà D=-1=>B=3 .

Ta có :AC và 3C-A=25=>C=10 và A=5 .

Thay vào \(\left(\frac{10}{5}-3\right)\left(-1\right)^{2017}=-1.-1=1\)

12 tháng 2 2017

P=1

8 tháng 2 2017

(Ax+B)(Cx+D)=\(ACx^2+\left(BC-A\right)x-B=50x^2+25x-3\)

Như vậy: \(\hept{\begin{cases}AC=50\\BC-A=25\\B=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}A=5\\B=3\\C=10\end{cases}}\)Thay số vào P được P=1

15 tháng 5 2018

\(50x^2+25x-3=50x^2+30x-5x-3=\left(10x-1\right)\left(5x+3\right)=\left(Cx+D\right)\left(Ax+B\right)\)

Vì \(D=-1\)nên ta có \(C=10;A=5;B=3\)

Do đó \(P=\left(\frac{C}{A}-B\right)\cdot D^{2017}=-1\cdot\left(\frac{10}{5}-3\right)=-1\cdot-1=1\)

11 tháng 2 2017

Làm theo cách phân tích con này không đơn giản

(violypic cần nhanh nữa)

Cách Phân phối:

\(\left(ax+b\right)\left(cx+d\right)=acx^2+\left(bc+ad\right)x+bd\)

d=-1=> b=3

ac=50 và 3c-a=25 => c=10 và a=5

Thay vào \(\left(\frac{10}{5}-3\right).\left(-1\right)^{2017}=-1.-1=1\)

11 tháng 2 2017

1

11 tháng 8 2020

Đề câu 2 có sai không vậy

11 tháng 8 2020

CÂU 2 ĐỀ SAI THÌ PHẢI, THEO MÌNH THÌ ĐƯỢC CÁI NÀY !!!!!!

Cộng lần lượt từng vế của 3 pt lại:

=> \(\left(a+b+c\right)\left(x+y\right)=a+b+c\)

=> \(a+b+c=0\)

(CHỖ NÀY ĐỀ BÀI CHO THIẾU x+y khác 1 nữa nhé)

=> 

\(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab.\left(-c\right)+c^3=-c^3+c^3+3abc=3abc\)

TỚ CHỈ CM ĐC \(a^3+b^3+c^3=3abc\)   thoy nhaaaaaaa

NV
25 tháng 11 2019

Xét hàm \(g\left(x\right)=f\left(x\right)-10x\)

\(\Rightarrow g\left(1\right)=f\left(1\right)-10.1=10-10=0\)

Tương tự \(g\left(2\right)=0\) ; \(g\left(3\right)=0\)

\(\Rightarrow g\left(x\right)\) luôn có 3 nghiệm \(x=\left\{1;2;3\right\}\)

\(\Rightarrow g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)\) với a là số thực bất kì

\(\Rightarrow f\left(x\right)=g\left(x\right)+10x=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)+10x\)

\(\Rightarrow f\left(12\right)=990\left(12-a\right)+120=12000-990a\)

\(f\left(-8\right)=-990\left(-8-a\right)-80=7840+990a\)

\(\Rightarrow\frac{f\left(12\right)+f\left(-8\right)}{10}+15=\frac{12000-990a+7840+990a}{10}+15=1999\)