![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
x, y là số thực, x < hoặc bằng 2, x + y >hoặc = 2. Tìm GTNN của A = 14x2+ 9y2+ 22xy - 42x - 34y + 35
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(A=9x^2+9y^2+25z^2\)
\(=5\left(x^2+y^2\right)+\left(4x^2+25z^2\right)+\left(4y^2+25z^2\right)\)
\(\ge5.2\sqrt{x^2y^2}+2\sqrt{4x^2.25z^2}+2\sqrt{4y^2.25z^2}\)
\(=10xy+20xz+20yz\)
\(=10\left(xy+2xz+2yz\right)=10.65=650\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\4x^2=25z^2\\4y^2=25z^2\end{cases}}\) và \(xy+2xz+2yz=65\)
\(\Leftrightarrow\) \(\hept{\begin{cases}x=y=5\\z=2\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\hept{\begin{cases}3x^2+6xy-x+3y=0\\4x-9y=6\left(1\right)\end{cases}}\)
+, \(x=0\)thì hpt đã cho vô nghiệm
+, \(x\ne0\), nhân cả 2 vế của (1) với x ,ta được hpt:
\(\hept{\begin{cases}3x^2+6xy-x+3y=0\left(2\right)\\4x^2-9xy-6x=0\left(3\right)\end{cases}}\)
Cộng (2) và (3),vế với vế ta được
\(7x^2-3xy-7x+3y=0\)
\(\Leftrightarrow x\left(7x-3y\right)-\left(7x-3y\right)=0\)
\(\Leftrightarrow\left(7x-3y\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\7x-3y=0\end{cases}}\)
+,\(x-1=0\Rightarrow x=1\Rightarrow y=-\frac{2}{9}\)
+,\(7x-3y=0\Rightarrow x=\frac{3y}{7}\),thay vào (1),ta được
\(4\cdot\frac{3y}{7}-9y=6\)\(-51y=42\Rightarrow y=-\frac{13}{17}\Rightarrow x=-\frac{6}{17}\)
Vậy....
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=5x^2+2y^2-2xy-4x+2y+2013\)
\(\Leftrightarrow P=\left(x^2-2xy+y^2\right)+\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)+2011\)
\(\Leftrightarrow P=\left(x-y\right)^2+\left(2x-1\right)^2+\left(y+1\right)^2+2011\ge2011\)
\(\Leftrightarrow min_P=2011\)
tương tự ta có :
\(\Leftrightarrow Q=\left(x^2-2xy+y^2\right)+\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)+1\)
\(\Leftrightarrow Q=\left(x-y\right)^2+\left(2x-1\right)^2+\left(y+1\right)^2+1\ge1\)
\(\Leftrightarrow min_Q=1\)
TK NKA !!!