Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{400}{25}=16\)
suy ra:
\(\frac{x^2}{9}=16\Rightarrow x^2=144\Rightarrow x=12\)hoặc \(x=-12\)
\(\frac{y^2}{16}=16\Rightarrow y^2=256\Rightarrow y=16\)hoặc \(y=-16\)
Câu còn lại tương tự
Lời giải:
$4x=5y\Rightarrow x=\frac{5}{4}y$. Khi đó:
$x^2-y^2=1$
$\Rightarrow (\frac{5}{4}y)^2-y^2=1$
$\Rightarrow \frac{25}{16}y^2-y^2=1$
$\Rightarrow \frac{9}{16}y^2=1\Rightarrow y^2=\frac{16}{9}$
$\Rightarrow y=\pm \frac{4}{3}$
Nếu $y=\frac{4}{3}$ thì $x=\frac{5}{4}.\frac{4}{3}=\frac{5}{3}$
$\Rightarrow xy=\frac{4}{3}.\frac{5}{3}=\frac{20}{9}$
Nếu $y=\frac{-4}{3}$ thì $x=\frac{5}{4}.\frac{-4}{3}=\frac{-5}{3}$
$\Rightarrow xy=\frac{-4}{3}.\frac{-5}{3}=\frac{20}{9}$
Vậy $xy=\frac{20}{9}$
Bài 1:Ta có:
\(\left(x-y\right)^2+\left(x+y\right)^2=50\)
\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\)
Áp dụng tc dãy tỉ số ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{\left(x-y\right)^2+\left(x+y\right)^2}{\left(3-4\right)^2+\left(3+4\right)^2}=\frac{50}{50}=1\)
\(\Rightarrow\begin{cases}\frac{x}{3}=1\Rightarrow x=3\\\frac{y}{4}=1\Rightarrow y=4\end{cases}\)
Bài 2:Ta có:
\(\left(x+y\right)^3+\left(x-y\right)^3=2960\)
\(2x=5y\Rightarrow\frac{x}{5}=\frac{y}{2}\)
Áp dụng tc dãy tỉ số ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{\left(x+y\right)^3+\left(x-y\right)^3}{\left(5+2\right)^3+\left(5-2\right)^3}=\frac{2960}{370}=8\)
\(\Rightarrow\begin{cases}\frac{x}{5}=8\Rightarrow x=40\\\frac{y}{2}=8\Rightarrow y=16\end{cases}\)
4x=5y và x2 - y2 =1