Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(4x^2+4z^2=17\Rightarrow x^2+z^2=\frac{17}{4}\); \(4y\left(x+2\right)=5\Leftrightarrow2xy+4y=\frac{5}{2}\); \(20y^2+27=-16z\Rightarrow5y^2+4z=-\frac{27}{4}\)
\(\Rightarrow x^2+z^2-2xy-4y+5y^2+4z=-5\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(z^2+4z+4\right)+\left(4y^2-4y+1\right)=0\)\(\Leftrightarrow\left(x-y\right)^2+\left(z+2\right)^2+\left(2y-1\right)^2=0\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-2\end{cases}}\)
\(\Rightarrow M=10.\frac{1}{2}+4.\frac{1}{2}+2019.\left(-2\right)=-4031\)
a) \(A=x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
b) \(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2.7+37=100\)
c) \(C=x^2+4y^2-2x+10+4xy-4y\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2.5+10=25\)
a) \(A=x^2+2xy+y^2-4x-4v+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
\(-9x^2+24x-18=-\left(9x^2-2\times3x\times4+16+2\right)\)
\(=-\left(3x-4\right)^2-2\le-2\)
Các câu sau tương tự.
\(Q=x^2+2xy+y^2-4x-4y+5=\left(x+y\right)^2-4\left(x+y\right)+5\)
Mà x+y=4
\(=>Q=4^2-4.4+5=16-16+5=5\)
Vậy Q=5
Ta có: A = 4x2 + y2 + 4x - 4y - 3 = (4x2 + 4x + 1) + (y2 - 4y + 4) - 10 = (2x + 1)2 + (y - 2)2 - 10
Ta luôn có: (2x + 1)2 \(\ge\)0 \(\forall\)x
(y - 2)2 \(\ge\)0 \(\forall\)y
=> (2x + 1)2 + (y - 2)2 - 10 \(\ge\) -10 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x+1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=2\end{cases}}\)
Vậy MinA = -10 <=> x = -1/2 và y = 2
B = x2 + 4y2 - 4x + 4y + 3 = (x2 - 4x + 4) + (4y2 + 4y + 1) - 2 = (x - 2)2 + (2y + 1)2 - 2
còn lại tương tự
1)
\(a,\) \(A=4x^2+4x+11\)
\(=\left(4x^2+4x+1\right)+10=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy : min \(A=10\Leftrightarrow x=-\frac{1}{2}\)
b) \(C=x^2-2x+y^2-4y+7\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x=1,y=2\)
Vậy : \(minC=2\Leftrightarrow x=1,y=2\)
2,
a) \(A=5-8x-x^2\)
\(=-\left(x^2+8x+16\right)+21=-\left(x+4\right)^2+21\le21\)
Dấu "=" xảy ra \(\Leftrightarrow x=-4\)
b) \(B=5-x^2+2x-4y^2-4y\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
Dấu "=" xảy ra \(\Leftrightarrow x=1,y=-\frac{1}{2}\)
Vô lí y^2 <0
xem lại đề bài đi bạn