Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x}{-5}=\frac{y}{6}=\frac{z}{-2}=k\) \(\left(k\ne0\right)\)
\(\Rightarrow x=-5k;y=6k;z=-2k\)
\(\Rightarrow A=\frac{3.k.\left(-5\right)+6.k-2.\left(-2\right).k}{-3.\left(-5\right).k-5.6.k+6.\left(-2\right).k}=\frac{-15k+6k+4k}{15k-30k-12k}=\frac{-5k}{-27k}=\frac{5}{27}\)
Vậy \(A=\frac{5}{27}\).
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
4x = 3y => x/3 = y/4 => x/9 = y/12 ( 1 )
5y = 6z => y/6 = z/5 => y/12 = z/10 ( 2 )
Từ ( 1 ) và ( 2 ) => x/9 = y/12 = z/10
=> 2x/18 = y/12 = z/10
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
2x/18 = y/12 = z/10 = 2x+y-z/18+12-10 = 40/20 = 2
=> x = 18 ; y = 24 ; z = 20
Vậy ...
1.
\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}=>\frac{y}{15}=\frac{z}{21}\)
=>\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
=> x=2x10=20
y=2x15=30
z=2x21=42
3z là 3x phải k :v
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\)
nên :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)
\(\Rightarrow\hept{\begin{cases}\frac{3x}{45}=\frac{4y}{80}=\frac{5z}{120}\\\frac{4x}{60}=\frac{5y}{100}=\frac{6z}{144}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{3x+4y+5z}{45+80+120}=\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\\\frac{4x+5y+6z}{60+100+144}=\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\end{cases}}\)
\(\Rightarrow\frac{3x+4y+5z}{245}=\frac{4x+5y+6z}{304}\)
\(\Rightarrow\frac{3x+4y+5z}{4x+5y+6z}=\frac{245}{304}\)
\(\Rightarrow M=\frac{245}{304}\)
bài này đặt k ez hơn : )
\(\hept{\begin{cases}\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\\\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\end{cases}}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)
đặt \(k=\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\Rightarrow x=15k,y=20k,z=24k\)
\(\Rightarrow M=\frac{3x+4y+5z}{4x+5y+6z}=\frac{3.15k+4.20k+5.24k}{4.15k+5.20k+6.24k}=\frac{245}{304}\)
\(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}\)\(\text{và }3x-5y+6z=9\)
MÌNH ĐANG CẦN GẤP GIÚP MÌNH NHA
\(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}\)\(\Leftrightarrow\frac{3\left(x-1\right)}{15}=\frac{5\left(y-2\right)}{15}=\frac{6\left(z-2\right)}{12}\)
\(\Leftrightarrow\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}\).Áp dụng tc dãy tỉ số "=" nhau ta có:
\(\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}=\frac{\left(3x-3\right)-\left(5y-10\right)+\left(6z-12\right)}{15-15+12}=\frac{9-5}{12}=\frac{1}{3}\)
\(\Rightarrow\hept{\begin{cases}\frac{3x-3}{15}=\frac{1}{3}\Rightarrow x=\frac{8}{3}\\\frac{5y-10}{15}=\frac{1}{3}\Rightarrow y=3\\\frac{6z-12}{12}=\frac{1}{3}\Rightarrow z=\frac{8}{3}\end{cases}}\)