\(4a^2+b^2=5ab\)va \(2a>b>0\)

Tính 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

\(4a^2+b^2=5ab\)

\(\Leftrightarrow\left(4a^2-4ab\right)+\left(b^2-ab\right)=0\)

\(\Leftrightarrow4a\left(a-b\right)+b\left(b-a\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)

\(\Leftrightarrow\) a = b hoặc 4a = b

Mà 4a > 2a > b > 0 nên a = b

Do đó  \(\frac{ab}{4a^2-b^2}=\frac{a^2}{4a^2-a^2}=\frac{a^2}{3a^2}=\frac{1}{3}\)

ta có

\(4a^2+b^2=5ab\Leftrightarrow\left(4a^2-4ab\right)+\left(b^2-ab\right)=0\)

\(\Leftrightarrow\left(a-b\right)+\left(4a-b\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}b=a\\b=4a\end{cases}}\)

thế a = b vào M ta được

\(M=\frac{a.a}{4a^2-a^2}=\frac{1}{3}\)

thế b=a4 vào M ta được

\(M=\frac{a.4a}{4a^2-16a^2}=-\frac{1}{3}\)

nguồn https://olm.vn/hoi-dap/detail/64680575994.html

26 tháng 9 2017

Ta có : \(4a^2+b^2=5ab\Leftrightarrow4a^2-5ab+b^2=0\Leftrightarrow4a^2-4ab-ab+b^2=0\)

\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\Leftrightarrow\left(4a-b\right)\left(a-b\right)=0\)(1)

Ta thấy \(2a>b>0\left(gt\right)\) nên \(4a>b>0\Rightarrow4a-b>0\)

Từ đó để (1) xảy ra \(\Leftrightarrow a-b=0\Leftrightarrow a=b\) Thay vào P ta được :

\(P=\frac{ab}{4a^2-b^2}=\frac{a.a}{4a^2-a^2}=\frac{a^2}{3a^2}=\frac{1}{3}\)

Vậy \(P=\frac{1}{3}\)

13 tháng 11 2016

Ta có :

\(4a^2+b^2-4ab=5ab-4ab\)

\(\Rightarrow\left(2a-b\right)^2=ab\)

Lại có : 

\(4a^2+b^2+4ab=5ab+4ab\)

\(\Rightarrow\left(2a+b\right)^2=9ab\)

\(\Rightarrow\left(2a+b\right)^2\left(2a-b\right)^2=ab.9ab\)

\(\left(4a^2-b^2\right)^2=\left(3ab\right)^2\)

Mà \(2a>b>0\Rightarrow\hept{\begin{cases}4a^2-b^2>0\\a>0;b>0\rightarrow3ab>0\end{cases}}\)

\(\Rightarrow4a^2-b^2=3ab\)

\(\Rightarrow A=\frac{ab}{3ab}=\frac{1}{3}\)

Vậy ...

5 tháng 4 2017

Mình mới học lớp 5 thôi nên không biết gì .

~~~ Chúc bạn học giỏi ~~~

8 tháng 2 2017

Từ \(4a^2+b^2=5ab\Rightarrow4a^2+b^2-5ab=0\)

\(\Rightarrow4a^2-ab-4ab+b^2=0\)

\(\Rightarrow a\left(4a-b\right)-b\left(4a-b\right)=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}\Rightarrow}\orbr{\begin{cases}a=b\\a=\frac{b}{4}\end{cases}}\)

*)Xét \(a=b\) thì \(F=\frac{b^2}{4b^2-b^2}=\frac{b^2}{3b^2}=\frac{1}{3}\)

*)Xét \(a=\frac{b}{4}\) thì \(F=\frac{\frac{b^2}{4}}{\frac{b^2}{4}-b^2}=-\frac{1}{3}\)

5 tháng 11 2017

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.

Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599

             = (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )

             =(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )

             = ( 1 + 5 + 52)(1 + 53+....+597)

             = 31(1 + 53+....+597)

Vì có một thừa số là 31 nên A chia hết cho 31.

 P/s Đừng để ý câu trả lời của mình

4a2+b2=5ab<=>(4a-b)(a-b)=0

TH1 4a-b=0<=>4a=b

=> \(P=\frac{4a^2}{4a^2-16a^2}=\frac{4a^2}{-12a^2}=\frac{-1}{3}\)

TH2 a-b=0

=> \(P=\frac{a^2}{3a^2}=\frac{1}{3}\)

1 tháng 12 2018

Ta có : \(4a^2+b^2=5ab\)

\(\Rightarrow4a^2-4ab-ab+b^2=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)  (1)

Vì  \(2a>b>0\)

\(\Rightarrow4a-b\ne0\)

Từ (1)  \(\Rightarrow a-b=0\)

\(\Rightarrow a=b\)

Thay a hoặc b vào biểu thức P ta có :

\(P=\frac{ab}{4a^2-b^2}=\frac{a^2}{4a^2-a^2}=\frac{1}{3}\)  ( a  khác 0 )

22 tháng 6 2019

\(4a^2+b^2=5ab\)

\(\Rightarrow4a^2-5ab+b^2=0\)

\(\Rightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)

\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)

Làm nốt

29 tháng 11 2016

\(4a^2+b^2=5ab\)

\(4a^2-5ab+b^2=0\)

\(4a^2-4ab-ab+b^2=0\)

\(4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\left(a-b\right)\left(4a-b\right)=0\)

\(\left[\begin{array}{nghiempt}a-b=0\\4a-b=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}a=b\\4a=b\end{array}\right.\)

\(2a>b>0\)

\(\Rightarrow a=b\)

Thay a = b vào M, ta có:

\(M=\frac{b\times b}{4b^2-b^2}\)

\(=\frac{b^2}{3b^2}\)

\(=\frac{1}{3}\)

Vậy . . .