Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(0< a1< a2< a3< ...< a15\)nên ta có:
\(\hept{\begin{cases}a1+a2+a3+a4+a5< 5a5\\a6+a7+a8+a9+a10< 5a10\\a11+a12+a13+a14+a15< 5a15\end{cases}\Rightarrow\frac{a1+a2+a3+...+a15}{a5+a10+a15}< \frac{5.\left(a5+a10+a15\right)}{a5+a10+a15}=5}\)
Vậy...
Ta có:a1<a2<a3<......,a15 =>a1+a2+...+a5<5a5;
a6+a7+...........+a10<5a10
a11+a12+.....+a15<5a15
=>a1+a2+a3+....+a15<5(a5+a10+a15)
=\(\frac{a1+a2+a3+....+a15}{a5+a10+a15}\)<5
Ta có:\(a_1+a_2+a_3+a_4+a_5< 5a_5\)
\(a_6+a_7+a_8+a_9+a_{10}< 5a_{10}\)
\(a_{11}+a_{12}+a_{13}+a_{14}+a_{15}< 10a_{15}\)
\(\implies\) \(a_1+a_2+a_3+....+a_{15}< 5a_5+5a_{10}+5a_{15}\)
\(\implies\) \(\frac{a_1+a_2+a_3+....+a_{15}}{a_5+a_{10}+a_{15}}< 5\left(đpcm\right)\)
Vì sao khi
đ
ổ
nư
ớ
c nóng vào phích r
ồ
i đ
ậ
y n
ắ
p ngay có th
ể
b
ậ
t n
ắ
p phích?
A. Nư
ớ
c trong phích n
ở
ra đ
ẩ
y n
ắ
p phích b
ậ
t lên.
B. Nư
ớ
c và ru
ộ
t phích dãn n
ở
không đ
ề
u làm b
ậ
t n
ắ
p.
C. Trong khi đ
ổ
nư
ớ
c, không khí len vào phích g
ặ
p nóng b
ị
giãn n
ở
gây ra l
ự
c làm b
ậ
t
n
ắ
p.
D.
C
ả
A, B, C đ
ề
u đúng.
ta có:\(0< a_1< a_2< ...< a_9\)
=> \(a_1+a_2+a_3< a_3+a_3+a_3=3.a_3\)
\(a_4+a_5+a_6< a_6+a_6+a_6=3.a_6\)
\(a_7+a_8+a_9< a_9+a_9+a_9=3.a_9\)
\(\Rightarrow\frac{a_1+a_2+...+a_9}{a_3+a_6+a_9}< \frac{3.a_3+3.a_6+3.a_9}{a_3+a_6+a_9}=\frac{3.\left(a_3+a_6+a_9\right)}{a_3+a_6+a_9}=3\)
=> đ p cm
Đặt \(f\left(n\right)=a_0+a_1+...+a_n-na_{n+1}\); Ta có \(f\left(0\right)=a_0\)
Bởi vì \(a_{n+2}\ge a_{n+1}\) nên ta có:
\(a_0+a_1+...+a_n-na_{n+1}>a_0+a_1+...+a_n+a_{n+1}-\left(n+1\right)a_{n+2}.\)
Vậy thì \(f\left(n\right)>f\left(n+1\right)\) hay \(f\left(n\right)\) là dãy đơn điệu giảm.
Bởi vậy, vì \(f\left(0\right)>0\) nên tồn tại duy nhất số m thỏa mãn \(f\left(m-1\right)>0\ge f\left(m\right).\)
Mặt khác, ta lại có:
\(a_0+a_1+...+a_{m-1}-\left(m-1\right)a_m>0;a_0+a_1+...+a_m-ma_{m+1}\le0\)
Từ đó suy ra:
\(a_m< \frac{a_0+a_1+...+a_m}{m}\le a_{m+1}\)
Đặt \(h\left(n\right)=a_0+a_1+...+a_m-ma_m\). Bởi vì \(a_{n+1}>a_n\) nên ta có:
\(a_0+a_1+...+a_n-na_n>a_0+a_1+...+a_n+a_{n+1}-\left(n+1\right)a_{n+1}.\)
Vậy \(h\left(n\right)\) cũng là dãy đơn điệu giảm.
Chú ý rằng: \(h\left(m+1\right)=a_0+a_1+...+a_{m+1}-\left(m+1\right)a_{m+1}\le0.\)
nên \(h\left(t\right)\le0\forall t>m.\) Vì vậy, \(h\left(n\right)>0\) sẽ không thỏa mãn với n > m. Vậy m là số duy nhất thỏa mãn.
Đây là bài tập trong đề thi IMO 2014 tại Nam Phi. Đề bài chính xác thì bất đẳng thức đằng sau có dấu bằng. Đây là bài cô dịch từ bài giải bằng tiếng anh của tác giả Gerhard Woeginger, Australia.
Vì \(a_1< a_2< a_3< ...< a_{15}\) ta có:
\(\dfrac{a_1+a_2+a_3+...+a_{15}}{a_5+a_{10}+a_{15}}< \dfrac{a_5+a_{10}+a_{15}+a_5+a_{10}+a_{15}+...+a_5+a_{10}+a_{15}}{a_5+a_{10}+a_{15}}\)\(\Rightarrow\dfrac{a_1+a_2+a_3+...+a_{15}}{a_5+a_{10}+a_{15}}< \dfrac{5\left(a_5+a_{10}+a_{15}\right)}{a_5+a_{20}+a_{15}}\)
\(\Rightarrow\dfrac{a_1+a_2+a_3+...+a_{15}}{a_5+a_{10}+a_{15}}< 5\)
\(\rightarrowđpcm\)
Ta có : \(a_1+(a_2+a_3+a_4)+...+(a_{11}+a_{12}+a_{13})+a_{14}+(a_{15}+a_{16}+a_{17})+(a_{18}+a_{19}+a_{20})< 0\)
\(a_1>0;a_2+a_3+a_4>0;....;a_{11}+a_{12}+a_{13}>0;a_{15}+a_{16}+a_{17}>0;a_{18}+a_{19}+a_{20}>0\Rightarrow a_{14}< 0\)
Cũng như vậy : \((a_1+a_2+a_3)+...+(a_{10}+a_{11}+a_{12})+(a_{13}+a_{14})+(a_{15}+a_{16}+a_{17})+(a_{18}+a_{19}+a_{20})< 0\)
\(\Rightarrow a_{13}+a_{14}< 0\)
Mặt khác : \(a_{12}+a_{13}+a_{14}>0\Rightarrow a_{12}>0\)
Từ các điều kiện \(a_1>0;a_{12}>0;a_{14}< 0\Rightarrow a_1\cdot a_{14}+a_{14}\cdot a_{12}< a_1\cdot a_{12}(đpcm)\)
P/S : Hoq chắc :>
bài này trong đề thi hsg lớp 7 đúng ko