Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) TH1: Nếu x + y + t + z ≠ 0
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
xy+z+t=yx+z+t=zx+y+t=tx+y+z=x+y+z+ty+z+t+x+z+t+x+y+t+x+y+z=13xy+z+t=yx+z+t=zx+y+t=tx+y+z=x+y+z+ty+z+t+x+z+t+x+y+t+x+y+z=13
=> 3x = y + z + t => 4x = x + y + z + t (1)
3y = x + z + t 4y = x + y + z + t (2)
3z = x + y + t 4z = x + y + z + t (3)
3t = x + y + z 4t = x + y + z + t (4)
Từ (1)(2)(3)(4) => x = y = z = t
⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=1+1+1+1=4⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=1+1+1+1=4
+) TH2: Nếu x + y + z + t = 0
=> x + y = -(z + t)
y + z = -(x + t)
t + z = -(x + y)
t + x = -(y + z)
⇒x+yz+t=y+zt+x=z+tx+y=t+xy+z=−1⇒x+yz+t=y+zt+x=z+tx+y=t+xy+z=−1
⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=(−1)+(−1)+(−1)+(−1)=−4
Mk nhĩ bn chép sai đề. Phải là \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}\)chứ!!! Sao lại là + ???!!!!
\(\frac{y+z+t}{x}=\frac{x+z+t}{y}=\frac{y+x+t}{z}=\frac{y+z+x}{t}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z+t}{x}=\frac{x+z+t}{y}=\frac{y+x+t}{z}=\frac{y+z+x}{t}=\frac{y+z+t+x+z+t+y+x+t+y+z+x}{x+y+z+t}\)
\(=\frac{3x+3y+3z+3t}{x+y+z+t}=\frac{3.\left(x+y+z+t\right)}{x+y+z+t}=3\)
\(\Rightarrow\frac{y+z+t}{x}=3\Rightarrow y+z+t=3x\)
\(\frac{x+z+t}{y}=3\Rightarrow x+z+t=3y\)
\(\frac{y+x+t}{z}=3\Rightarrow y+x+t=3z\)
\(\frac{y+z+x}{t}=3\Rightarrow y+z+x=3t\)
\(M=\frac{2x}{y+z+t}-\frac{3y}{x+z+t}-\frac{4z}{x+y+t}-\frac{5t}{x+y+z}\)
\(\Rightarrow M=\frac{2x}{3x}-\frac{3y}{3y}-\frac{4z}{3z}-\frac{5t}{3t}\)
\(M=\frac{2}{3}-\frac{3}{3}-\frac{4}{3}-\frac{5}{3}\)
\(M=\frac{2-3-4-5}{3}\)
\(M=\frac{-10}{3}\)
Vậy \(M=\frac{-10}{3}\)
Tham khảo nhé~
Ta có:
\(\frac{x}{y}=\frac{x}{z}=\frac{z}{t}\Rightarrow\frac{x}{y}=\frac{t}{z}=\frac{z}{x}\Rightarrow\frac{x}{t}=\frac{y}{z}=\frac{z}{x}=\frac{1}{8}\)\(\frac{1}{8}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{t}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{t+z+x}=\frac{1}{8}\)
Vậy \(\frac{x+y+z}{y+z+t}=\frac{1}{8}\)
TA CỘNG 1 VÀO ĐẲNG THỨC TRÊN
\(\Rightarrow\)X=Y=Z=T
VẬY A=4 ;-1
A = { 4 ; -1 }
k cho mk nha