Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)
Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
=> a + b = -(c + d)
=> b + c = (-a + d)
=> c + d = -(a + b)
=> d + a = (-b + c)
Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4
Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = 1 + 1 + 1 + 1 = 4
2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)
Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)
b) 72x + 72x + 3 = 344
=> 72x + 72x.73 = 344
=> 72x.(1 + 73) = 344
=> 72x = 1
=> 72x = 70
=> 2x = 0 => x = 0
c) Ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
=> 2x + 2 = 14 => x = 6 ;
2y - 4 = 6 => y = 5 ;
6 + 5 + z = 17 => z = 6
Vậy x = 6 ; y = 5 ; z = 6
3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau)
=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;
Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0
Vậy c = 0 hoặc b = 0
c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)
Vậy P = 8
2. b) \(7^{2x}+7^{2x+3}=344\)
\(7^{2x}\cdot\left(1+7^3\right)=344\)
\(7^{2x}\cdot\left(1+343\right)=344\)
\(7^{2x}\cdot344=344\)
\(7^{2x}=1\)
\(7^{2x}=7^0\)
\(2x=0\)
\(x=0\)
Ta có:\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}\)
=>\(\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1\)
=>\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Vì các phân số trên có cùng tử. Nên các mẫu của phân số đó bằng nhau.
=>a=b=c=d
=>M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)=\(\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)=1+1+1+1=4
Vậy M=4
\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)
Vậy 3a= b+c+d 3b=c+d+a 3c=d+a+b 3d=a+b+c
Suy ra a=b=c=d
Thay vào ta có M=1+1+1+1=4
BẤM ĐÚNG CHO MÌNH NHÉ
\(P=\frac{n-7+9}{n-7}=1+\frac{9}{n-7}\)
\(\left(\text{Để P}\right)max\Rightarrow\left(\frac{9}{n-7}\right)max\Rightarrow\left(n-7\right)min\text{ và }n-7>0\left(\text{vì }9>0\right)\)
n-7 min và n-7>0 => n-7=1 => n=8. Vậy MaxP=10
\(\hept{\begin{cases}b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\\c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\end{cases}}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{abc}{bcd}=\frac{a}{d}\)
áp dụng t.c dtsbn:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{abc}{bcd}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(đpcm\right)\)
B1: Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)
Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{a+b}{a+b+2c+2d}=\frac{1}{3}\)
\(\Rightarrow\frac{a+b+2c+2d}{a+b}=3\)\(\Rightarrow1+\frac{2\left(c+d\right)}{a+b}=3\)\(\Rightarrow\frac{2\left(c+d\right)}{a+b}=2\)\(\Rightarrow\frac{c+d}{a+b}=1\)(1)
Lại có: \(\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{b+c}{b+c+2\left(a+d\right)}=\frac{1}{3}\)
\(\Rightarrow\frac{b+c+2\left(a+d\right)}{b+c}=3\)\(\Rightarrow1+\frac{2\left(a+d\right)}{b+c}=3\)\(\Rightarrow\frac{2\left(a+d\right)}{b+c}=2\)\(\Rightarrow\frac{a+d}{b+c}=1\)(2)
Ta có: \(\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{c+d}{c+d+2\left(a+b\right)}=\frac{1}{3}\)
\(\Rightarrow\frac{2\left(a+b\right)+c+d}{c+d}=3\)\(\Rightarrow\frac{2\left(a+b\right)}{c+d}+1=3\)\(\Rightarrow\frac{2\left(a+b\right)}{c+d}=2\)\(\Rightarrow\frac{a+b}{c+d}=1\)(3)
Lại có: \(\frac{a}{b+c+d}=\frac{d}{a+b+c}=\frac{a+d}{a+d+2\left(b+c\right)}=\frac{1}{3}\)
\(\Rightarrow\frac{2\left(c+b\right)+a+d}{a+d}=3\)\(\Rightarrow\frac{2\left(c+b\right)}{a+d}+1=3\)\(\Rightarrow\frac{2\left(b+c\right)}{a+d}=2\)\(\Rightarrow\frac{b+c}{a+d}=1\)(4)
Từ (1) , (2) , (3) , (4)
\(\Rightarrow P=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
B2: a, Vì (x4 + 3)2 ≥ 0
Dấu " = " xảy ra <=> x4 + 3 = 0
<=> x4 = 3
<=> x = 4√3
Vậy GTNN A = 0 khi x = 4√3
b, Vì |0,5 + x| ≥ 0 ; (y - 1,3)4 ≥ 0
=> |0,5 + x| + (y - 1,3)4 ≥ 0
=> |0,5 + x| + (y - 1,3)4 + 20 ≥ 20
Dấu " = " xảy ra <=> \(\hept{\begin{cases}0,5+x=0\\y-1,3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-0,5\\y=1,3\end{cases}}\)
Vậy GTNN V = 20 khi x = -0,5 và y = 1,3
c, Ta có: \(C=\frac{5x-19}{x-4}=\frac{5\left(x-4\right)+1}{x-4}=5+\frac{1}{x-4}\)
C đạt GTNN <=> \(\frac{1}{x-4}\)đạt GTNN <=> x - 4 đạt GTLN
<=> x > 4 , x nguyên dương
Vậy C có GTNN <=> x > 4 , x nguyên dương
(Ko chắc)
( t tham khảo 1 số bài khác thì ng` ta giải x = 3 thì C có GTNN = 4 )
Bài 3:
a, Để N có GTLN <=> 2(x - 2014)2 + 3 có GTNN
Vì (x - 2014)2 ≥ 0 => 2(x - 2014)2 ≥ 0
=> 2(x - 2014)2 + 3 ≥ 3
\(\Rightarrow\frac{1}{2\left(x-2014\right)^2+3}\le\frac{1}{3}\)
Dấu " = " xảy ra <=> x - 2014 = 0
<=> x = 2014
Vậy GTLN N = 1/3 khi x = 2014
b, Ta có: \(P=\frac{27-2x}{12-x}=\frac{2\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)
Để P có GTLN <=> \(\frac{3}{12-x}\)có GTLN <=> 12 - x có GTNN ( (12 - x) ∈ N ; 12 - x ≠ 0)
<=> 12 - x = 1
<=> x = 11
\(\Rightarrow P=2+\frac{3}{12-x}=2+3=5\)
b, Có: a/b < c/d => ad < bc
Xét a.(b+d)-b.(a+c) = ab+ad-ba-bc = ad-bc < 0
=> a.(b+d) < b.(a+c)
=> a/b < a+c/b+d
c, Đề phải là cho a+b+c = 2016 chứ bạn
Có : A = a/a+b+c-c + b/a+b+c-a + c/a+b+c-b = a/a+b + b/b+c + c/c+a
Vì a,b,c thuộc Z+ nên a/a+b > 0 ; b/b+c > 0 ; c/c+a > 0
=> A > a/a+b+c + b/a+b+c + c/a+b+c = 1
Lại có : a < a+b ; b < b+c ; c < c+a => 0 < a/a+b < a ; 0 < b/b+c < 1 ; 0 < c/c+a < 1
=> A < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c = 2
=> 1 < A < 2
=> A ko phải là số tự nhiên
Tk mk nha
a,ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU.
TA CÓ:\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{d}\)=\(\frac{d}{e}\)=>\(\frac{2a^2}{2b^2}\)=\(\frac{3b^2}{3c^2}\)=\(\frac{4c^2}{4d^2}\)=\(\frac{5d^2}{5e^2}\)=\(\frac{2a^2+3b^2+4c^2+5d^2}{2b^2+3c^2+4d^2+5e^2}\)(đfcm)
Câu 1:
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak;y=bk;z=ck\)
Ta có: \(\frac{bz-cy}{a}=\frac{bck-bck}{a}=0\) (1)
\(\frac{cx-az}{b}=\frac{ack-ack}{b}=0\) (2)
\(\frac{ay-bx}{c}=\frac{abk-abk}{c}=0\) (3)
Từ (1),(2),(3) suy ra \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
Câu 2:
Theo đề bài ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\), thêm 1 vào mỗi phân số ta được:
\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)
\(\Rightarrow\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)
\(\Rightarrow\left(a+b+c\right)\cdot\frac{1}{b+c}=\left(a+b+c\right)\cdot\frac{1}{a+c}=\left(a+b+c\right)\cdot\frac{1}{a+b}\)
Vì a,b,c khác nhau và khác 0 nên đẳng thức xảy ra chỉ khi a + b + c = 0 => \(\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)
Thay vào P ta được:
\(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)
Vậy P = -3
Câu 3:
Theo đề bài ta có \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\), bớt 1 ở mỗi phân số ta được:
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
- Nếu a + b + c + d \(\ne\) 0 => a = b = c = d lúc đó M = 1 + 1 + 1 + 1 = 4
- Nếu a + b + c + d = 0 => a + b = -(c + d)
b + c = -(d + a)
c + d = -(a + b)
d + a = -(b + c)
Lúc đó M = (-1) + (-1) + (-1) + (-1) = -4
ta có\(\left|x+y-5\right|\ge0\)
\(\left(y-2\right)^8\ge0\)
để biểu thức = 0 thì 2 biểu thức trên =0
\(tacó\)\(x+y=5\)
\(y-2=0\Rightarrow y=2\)
\(x+2=5\Rightarrow x=3\)
x=2;y=3