Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) ; \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)\(\Rightarrow\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}\)\(=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\Rightarrow\frac{a+c}{b+d}=\frac{a-c}{b-d}\)\(\left(đpcm\right)\)
Người lái xe trước khi đi thấy chỉ còn 3/5 thùng xăng, sợ không đủ nên người đó mua thêm 14 lít xăng nữa. Khi về tới nhà anh thấy chỉ còn 1/3 thùng xăng và tính ra xe tiêu thụ hết 30 lít xăng trong chuyến đi đó. Hỏi thùng xăng chứa bao nhiêu lít xăng?
a + c = 2b
( a + c ) . d = 2bd
Mà 2bd = c . ( b + d )
\(\Rightarrow\)( a + c ) . d = c . ( b + d )
\(\Rightarrow\)ad + cd = bc + cd
\(\Rightarrow\)ad = bc
\(\Rightarrow\)\(\frac{a}{b}=\frac{c}{d}\)( đpcm )
a) Nhân cả hai vế với b, ta có đpcm
b) Đề sai
c) Nhân cả hai vế với b, ta có đpcm
d) Bạn trên đã làm r , mình k trình bày lại nữa
d,
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\) \(a=k\times b\) ; \(c=k\times d\)
Ta có :
\(\frac{a^2}{b^2}=\frac{\left(k\times b\right)^2}{b^2}=\frac{k^2\times b^2}{b^2}=k^2\) (1)
\(\frac{c^2}{d^2}=\frac{\left(k\times d\right)^2}{d^2}=\frac{k^2\times d^2}{d^2}=k^2\) (2)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(k\times b\right)^2+\left(k\times d\right)^2}{b^2+d^2}=\frac{k^2\times b^2+k^2\times d^2}{b^2+d^2}=\frac{k^2\times\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (3)
Từ (1) ; (2) và (3) => \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
\(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad>bc\)
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
\(\Rightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)
Từ (1); (2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)
\(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad=bc\)
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(b-d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
\(\Rightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
Từ ( 1 ) và ( 2 )
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)( đpcm )
Đặt \(\frac{a}{b}< \frac{c}{d}=k\Rightarrow a< bk;c=dk\Rightarrow a+c< bk+dk=\left(b+d\right)k\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{\left(b+d\right)k}{b+d}=k\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Ta có : \(\frac{a}{b}>\frac{a+c}{b+d}\)
<=> \(a\left(b+d\right)>b\left(a+c\right)\)
<=> \(ab+ad>bc+ba\)
<=> \(ad>bc\)[ Đoạn này ta thấy ba bên vế trái và vế phải giống nhau nên rút gọn bớt đi ]
<=> \(a>b\)
=> \(\frac{a}{b}>\frac{a+c}{b+d}\)
+ \(b=\frac{a+c}{2}\Rightarrow2b=a+c.\) (1)
+ \(c=\frac{2bd}{b+d}\Rightarrow bc+cd=2bd\)(2)
Thay (1) vào (2) ta có
\(bc+cd=\left(a+c\right)d=ad+cd\Rightarrow bc=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\left(dpcm\right)\)