\(\sqrt{ }\)xx

làm 1 phép tính có kết quả bằ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 7 2020

7.

ĐKXĐ: ...

\(\Leftrightarrow10\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=3\left(x^2+2\right)\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow10ab=3\left(a^2+b^2\right)\)

\(\Leftrightarrow3a^2-10ab+3b^2=0\)

\(\Leftrightarrow\left(a-3b\right)\left(3b-a\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=3b\\3a=b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-x+1}=3\sqrt{x+1}\\3\sqrt{x^2-x+1}=\sqrt{x-1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=9x+9\\9x^2-9x+9=x-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-10x-8=0\\9x^2-10x+10=0\end{matrix}\right.\) (casio)

NV
20 tháng 7 2020

6.

ĐKXĐ: ...

\(\Leftrightarrow2x^2+4=3\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow2a^2+2b^2=3ab\)

\(\Leftrightarrow2a^2-3ab+2b^2=0\)

Phương trình vô nghiệm (vế phải là \(5\sqrt{x^3+1}\) sẽ hợp lý hơn)

NV
11 tháng 8 2020

5.

ĐKXĐ: ...

\(\Leftrightarrow3x^2-14x-5+\sqrt{3x+1}-4+1-\sqrt{6-x}=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x-5\right)+\frac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\frac{x-5}{1+\sqrt{6-x}}=0\)

\(\Leftrightarrow\left(x-5\right)\left(3x+1+\frac{3}{\sqrt{3x+1}+4}+\frac{1}{1+\sqrt{6-x}}\right)=0\)

\(\Leftrightarrow x=5\)

6.

ĐKXĐ: \(-4\le x\le4\)

\(\Leftrightarrow\frac{\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)

\(\Leftrightarrow\frac{x\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}=2\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{4-x}+2=2\sqrt{x+4}+4\)

\(\Leftrightarrow2\sqrt{x+4}-\frac{4}{5}+\frac{14}{5}-\sqrt{4-x}=0\)

\(\Leftrightarrow\frac{2\left(x+4-\frac{4}{25}\right)}{\sqrt{x+4}+\frac{2}{5}}+\frac{\frac{196}{25}-4+x}{\frac{14}{5}+\sqrt{4-x}}=0\)

\(\Leftrightarrow\left(x-\frac{96}{25}\right)\left(\frac{2}{\sqrt{x+4}+\frac{2}{5}}+\frac{1}{\frac{14}{5}+\sqrt{4-x}}\right)=0\)

\(\Rightarrow x=\frac{96}{25}\)

NV
11 tháng 8 2020

1.

Bạn coi lại đề

2.

ĐKXĐ: \(1\le x\le2\)

Nhận thấy \(\sqrt{x+2}+\sqrt{x-1}>0;\forall x\) , nhân 2 vế của pt với nó:

\(\left(\sqrt{x+2}+\sqrt{x-1}\right)\left(\sqrt{x+2}-\sqrt{x-1}\right)\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)

\(\Leftrightarrow3\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)

\(\Leftrightarrow3\sqrt{2-x}+3=\sqrt{x+2}+\sqrt{x-1}\)

\(\Leftrightarrow3\sqrt{2-x}+2-\sqrt{x+2}+1-\sqrt{x-1}=0\)

\(\Leftrightarrow3\sqrt{2-x}+\frac{2-x}{2+\sqrt{x+2}}+\frac{2-x}{1+\sqrt{x-1}}=0\)

\(\Leftrightarrow\sqrt{2-x}\left(3+\frac{\sqrt{2-x}}{2+\sqrt{x+2}}+\frac{\sqrt{2-x}}{1+\sqrt{x-1}}\right)=0\)

\(\Leftrightarrow\sqrt{2-x}=0\Rightarrow x=2\)

24 tháng 4 2020

Theo đề bài: 

 \(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(1)

Lại có: \(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(\sqrt{x^2+\sqrt{2020}}-x\right)=\sqrt{2020}\)(2)

Và \(\left(\sqrt{y^2+\sqrt{2020}}-y\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(3)

Từ (1) và (3) => \(x+\sqrt{x^2+\sqrt{2020}}=\sqrt{y^2+\sqrt{2020}}-y\)

<=> \(x+y=-\sqrt{x^2+\sqrt{2020}}+\sqrt{y^2+\sqrt{2020}}\)(4)

Từ (1) và (2) => \(\sqrt{x^2+\sqrt{2020}}-x=\sqrt{y^2+\sqrt{2020}}+y\)

<=> \(x+y=\sqrt{x^2+\sqrt{2020}}-\sqrt{y^2+\sqrt{2020}}\)(5) 

Từ (4) ( 5 ) => x + y = - ( x + y ) <=> x = - y 

=> \(M=9x^4+7x^4-12x^2+4x^2+5\)

\(=16x^4-8x^2+5=\left(4x^2-1\right)^2+4\ge4\)

Dấu "=" xảy ra <=> \(4x^2-1=0\)<=> \(x=\pm\frac{1}{2}\)

Với x = 1/2 => (x; y) = ( 1/2; -1/2) 

Với x = -1/2 => ( x; y ) = ( -1/2; 1/2) 

Vậy min M = 4 đạt tại ....

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

1. ĐKXĐ: $\xgeq \frac{-6}{5}$

PT \(\Leftrightarrow [\sqrt{2x^2+5x+7}-(x+3)]+[(x+2)-\sqrt{5x+6}]+(x^2-x-2)=0\)

\(\Leftrightarrow \frac{x^2-x-2}{\sqrt{2x^2+5x+7}+x+3}+\frac{x^2-x-2}{x+2+\sqrt{5x+6}}+(x^2-x-2)=0\)

\(\Leftrightarrow (x^2-x-2)\left(\frac{1}{\sqrt{2x^2+5x+7}+x+3}+\frac{1}{x+2+\sqrt{5x+6}}+1\right)=0\)

Với $x\geq \frac{-6}{5}$, dễ thấy biểu thức trong ngoặc lớn hơn hơn $0$

Do đó: $x^2-x-2=0$

$\Leftrightarrow (x+1)(x-2)=0$

$\Leftrightarrow x=-1$ hoặc $x=2$ (đều thỏa mãn)

 

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Bài 2: Tham khảo tại đây:

Giải pt \(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\) - Hoc24

6 tháng 11 2016

cho\(\Delta ABC\)có 3 góc nhọn, đường cao BE, CF cắt nhau tại H. Qua A vẽ các đường thảng song song với BE và CF lần lượt cắt các đường thẳng CF và BE tại P và Q

1) CM: AH.AB=QA.BC

2)CM: BF.BA+CE.CA=BC2

3) Đường trung tuyến AM của tam giác ABC cắt PQ tại K. CM: 4 điểm A, K, E, Q cùng thuộc một đường tròn

18 tháng 2 2017

mấy câu đầu + giữa = bình phương+ liên hợp

câu cuối cùng pt cho thành mũ 2

3 tháng 6 2017

\(\sqrt{x-1}\)>=0

=>x>=1

x2-3x-+2=(x-1)(x-2)>=0

mà x>=1

=>x>=2

=>19\(\sqrt{x-1}\)+5\(\sqrt[4]{x^2-1}\)+95\(\sqrt[6]{x^2-3x+2}\)>=  19+5=24 ( khác vs giả thiết 

=> pt trên vô nghiệm..........