K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2021

a: \(\overrightarrow{MN}+\overrightarrow{NP}+\overrightarrow{PQ}\)

\(=\overrightarrow{MP}+\overrightarrow{PQ}\)

\(=\overrightarrow{MQ}\)

1 tháng 11 2017

ta có : \(\overrightarrow{MN}+\overrightarrow{NQ}=\overrightarrow{MQ}+\overrightarrow{QN}+\overrightarrow{NQ}=\overrightarrow{MQ}+\overrightarrow{0}=\overrightarrow{MQ}\ne\overrightarrow{MQ}+\overrightarrow{NP}\)

VẬY kết luận đề sai

2 tháng 8 2019

Bài 2. TỔNG VÀ HIỆU CỦA HAI VECTO

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Vận dụng tính chất giao hoán ta có: \[\overrightarrow u  = \overrightarrow {NP}  + \overrightarrow {MN}  = \overrightarrow {MN}  + \overrightarrow {NP}  = \overrightarrow {MP} \]

Chọn C.

26 tháng 10 2018

a)\(\overrightarrow{MN}+\overrightarrow{PQ}=\overrightarrow{MP}+\overrightarrow{PN}+\overrightarrow{PM}+\overrightarrow{MQ}=\overrightarrow{MQ}-\overrightarrow{NP}\)

b)\(\overrightarrow{MQ}+\overrightarrow{NP}=\overrightarrow{MF}+\overrightarrow{FQ}+\overrightarrow{NF}+\overrightarrow{FP}=2\overrightarrow{EF}\)

(vì vecto FM+FN=2FE=>-(FM+FN)=-2FE=>MF+NF=2EF)

5 tháng 9 2019

a) \(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\Rightarrow2\overrightarrow{IA}-\overrightarrow{IA}-\overrightarrow{AB}+\overrightarrow{IA}+\overrightarrow{AC}=\overrightarrow{0}\)

\(\Rightarrow2\overrightarrow{AI}=\overrightarrow{AC}-\overrightarrow{AB}\Rightarrow\overrightarrow{AB}+2\overrightarrow{AI}=\overrightarrow{AC}\). Từ đó suy ra cách dựng điểm I:

A B C I

b) Với cách lấy điểm I như trên, ta có điểm I cố định. Khi đó MN đi qua I, thật vậy:

\(\overrightarrow{MN}=2\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=2\overrightarrow{MI}+2\overrightarrow{IA}-\overrightarrow{MI}-\overrightarrow{IB}+\overrightarrow{MI}+\overrightarrow{IC}\)

\(=2\overrightarrow{MI}+\left(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}\right)=2\overrightarrow{MI}\)

Suy ra I là trung điểm MN hay MN đi qua điểm I cố định (đpcm).

c) \(\overrightarrow{MP}=\frac{1}{2}\overrightarrow{MB}+\frac{1}{2}\overrightarrow{MN}=\overrightarrow{MA}+\frac{1}{2}\overrightarrow{MC}\)

Đặt K là điểm sao cho \(\overrightarrow{KA}+\frac{1}{2}\overrightarrow{KC}=\overrightarrow{0}\Rightarrow\hept{\begin{cases}K\in\left[AC\right]\\KA=\frac{1}{2}KC\end{cases}}\)tức K xác định

Khi đó \(\overrightarrow{MP}=\overrightarrow{MK}+\overrightarrow{KA}+\frac{1}{2}\overrightarrow{MK}+\frac{1}{2}\overrightarrow{KC}=\frac{3}{2}\overrightarrow{MK}\), suy ra MP đi qua K cố định (đpcm).