Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta AOB=\Delta COD\left(c.c.c\right)\) suy ra \(\widehat{AOB}=\widehat{COD}\)
Thiếu nhiều ý quá nha
Bài làm của bạn sơ xài
Dựa vào điều kiện nào mà kết luận đc 2 tam giác đó = nhau
Giải chưa chi tiết, cụ thể
a. Ta có⎪⎨⎪⎩ˆAOD+ˆCOD=90 độ (=ˆAOC)ˆBOC+ˆCOD=90 độ (=ˆBOD)
⇒ˆAOD=ˆBOC
b) Ta có: ⎧⎪⎨⎪⎩ˆAOD+ˆCOD=90 độ (=ˆAOC)ˆBOC+ˆCOD=900 độ (=ˆBOD)
⇒ˆAOD+ˆBOC+ˆCOD+ˆCOD=180 độ
Mà: ˆAOD+ˆBOC+ˆCOD=ˆAOB
⇒ˆAOB+ˆCOD=180 độ
a) Ta có: \(\left\{{}\begin{matrix}\widehat{AOD}+\widehat{COD}=90^0\left(=\widehat{AOC}\right)\\\widehat{BOC}+\widehat{COD}=90^0\left(=\widehat{BOD}\right)\end{matrix}\right.\)
\(\Rightarrow\widehat{AOD}=\widehat{BOC}\)
b) Ta có: \(\left\{{}\begin{matrix}\widehat{AOD}+\widehat{COD}=90^0\left(=\widehat{AOC}\right)\\\widehat{BOC}+\widehat{COD}=90^0\left(=\widehat{BOD}\right)\end{matrix}\right.\)
\(\Rightarrow\widehat{AOD}+\widehat{BOC}+\widehat{COD}+\widehat{COD}=180^0\)
Mà: \(\widehat{AOD}+\widehat{BOC}+\widehat{COD}=\widehat{AOB}\)
\(\Rightarrow\widehat{AOB}+\widehat{COD}=180^0\)
1/ Ta có hình vẽ:
A B C D O
Ta có: góc AOC + góc AOD = 1800 (kb)
Mà góc AOC - góc AOD = 200 (GT)
=> góc AOC = (1800 + 200) / 2 = 1000
=> góc AOD = (1800 - 200 ) / 2 = 800
Ta có: góc AOD = góc BOC = 800 (đđ)
Ta có: góc AOC = góc BOD = 1000 (đđ).
2/ Ta có hình vẽ:
A O B C D E 25 độ
Ta có: góc AOB = 500
Mà OC là pg góc AOB
=> góc AOC = góc COB = 500 / 2 = 250
Ta lại có: góc DOE = 250
=> góc COB = góc DOE
Mà OD là tia đối của tia OC
=> góc đối đỉnh với DOE là góc COB.
a: Xét ΔAOB và ΔCOD có
OA=OC
OB=OD
AB=CD
Do đó: ΔAOB=ΔCOD
b: Ta có: ΔAOB=ΔCOD
nên \(\widehat{AOB}=\widehat{COD}\)
Xét \(\Delta AOB\) và \(\Delta COD\) có :
\(AO=OD\)
\(OC=OB\)
\(AB=CD\)
\(\Rightarrow\Delta AOB=\Delta COD\left(c-c-c\right)\)
=) \(\widehat{AOB}=\widehat{COD}\)
tam giác AOB = tam giác COD ( c.c.c )
suy ra góc AOB = góc COD ( 2 góc tương ứng )