Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a/ \(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a(a+1)(a+2) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2,3) = 1 nên a(a+1)(a+2) chia hết cho 6. Ta có đpcm
b/ Đề sai , giả sử với a = 3
c/ \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1>0\)
d/ \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
e/ \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\)
2/ a/ \(x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
BT đạt giá trị nhỏ nhất bằng 2 tại x = 3
b/ \(-x^2+6x-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)
BT đạt giá trị lớn nhất bằng -2 tại x = 3
Do \(x+3\) và \(5-2x\) đều không âm, áp dụng BĐT \(ab\le\frac{\left(a+b\right)^2}{4}\) ta có
\(y=\frac{1}{2}.\left(2x+6\right)\left(5-2x\right)\le\frac{1}{2}.\frac{\left(2x+6+5-2x\right)^2}{4}=\frac{1}{2}.\frac{11^2}{4}=\frac{121}{8}\)
\(\Rightarrow y_{max}=\frac{121}{8}\) khi \(2x+6=5-2x\Leftrightarrow x=\frac{-1}{4}\)
2x-x^2=-x^2+2x-1+1=-(x^2-2x+1)+1=-(x-1)^2+1\(\le\)1 với mọi x(vì -(x-1)^2\(\le0\) với mọi x). Dấu "=" xảy ra khi -(x-1)^2=0 \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy biểu thức có giá trị nhỏ nhất là 1 tại x=1