Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(x\sqrt{2017-y^2}\le\frac{x^2+2017-y^2}{2}\)
\(y\sqrt{2017-x^2}\le\frac{y^2+2017-x^2}{2}\)
Do đó \(x\sqrt{2017-y^2}+y\sqrt{2017-x^2}\le2017\)
dấu = xảy ra khi và chỉ khi :\(\hept{\begin{cases}x^2=2017-y^2\\y^2=2017-x^2\end{cases}}\)
\(\Leftrightarrow2\left(x^2+y^2\right)=2.2017\)(cộng vế với vế)
\(\Leftrightarrow x^2+y^2=2017\)
Ta có : \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)
\(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)
nhân theo vế của ( 1 ) ; ( 2 ) , ta có :
\(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)
\(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)
rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :
\(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)
\(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\)
\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)
A = 2017
( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :) )
2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)
\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)
\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)
Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)
\(\Leftrightarrow x=2015;y=2016;z=2017\)
nếu là( \(\sqrt{x^2+2017}\)+x)(\(\sqrt{y^2+2017}\)+y)=2017 thì dễ rồi còn nếu là 1 thì chưa nghĩ ra
a,PT 1 <=> (x-y)^2+(y-z)^2+(z-x)^2=0
=>x=y=z thay vào pt 2 ta dc x=y=z=3
c, xét x=y thay vào ta dc x=y=2017 hoặc x=y=0
Xét x>y => \(\sqrt{x}+\sqrt{2017-y}>\sqrt{y}+\sqrt{2017-x}\)
=>\(\sqrt{2017}>\sqrt{2017}\)(vô lí). TT x<y => vô lí. Vậy ...
d, pT 2 <=> x^2 - xy + y^2 = 2z = 2(x + y)
\(< =>x^2-x\left(y+2\right)+y^2-2y=0\). Để pt có no thì \(\Delta>0\)
<=> \(\left(y+2\right)^2-4\left(y^2-2y\right)\ge0\)
<=> \(-3y^2+12y+4\ge0\)<=>\(3\left(y-2\right)^2\le16\)
=> \(\left(y-2\right)^2\in\left\{1,2\right\}\). Từ đó tìm dc y rồi tìm nốt x
b,\(\hept{\begin{cases}x^3=y^3+9\\3x-3x^2=6y^2+12y\end{cases}}\).Cộng theo vế ta dc \(\left(x-1\right)^3=\left(y+2\right)^3\)=>x=y+3. Từ đó tìm dc x,y
Ta có : \(\left\{{}\begin{matrix}\left(x+\sqrt{2017+x^2}\right)\left(\sqrt{2017+x^2}-x\right)=2017\\\left(x+\sqrt{2017+x^2}\right)\left(y+\sqrt{2017+y^2}\right)=2017\end{matrix}\right.\)
\(\Rightarrow\sqrt{2017+x^2}-x=y+\sqrt{2017+y^2}\)
\(\Leftrightarrow x+y=\sqrt{2017+x^2}-\sqrt{2017+y^2}\left(1\right)\)
\(\left\{{}\begin{matrix}\left(y+\sqrt{2017+y^2}\right)\left(\sqrt{2017+y^2}-y\right)=2017\\\left(y+\sqrt{2017+y^2}\right)\left(x+\sqrt{2017+x^2}\right)=2017\end{matrix}\right.\)
\(\Rightarrow\sqrt{2017+y^2}-y=x+\sqrt{2017+x^2}\)
\(\Leftrightarrow x+y=\sqrt{2017+y^2}-\sqrt{2017+x^2}\left(2\right)\)
Lấy (1) + (2) \(\Leftrightarrow2\left(x+y\right)=0\Leftrightarrow x+y=0\Leftrightarrow x=-y\)
\(T=x^{2017}+y^{2017}=-y^{2017}+y^{2017}=0\)
Nhân 2 vế của \(pt\left(2\right)\) cho \(\sqrt{x^2+2017}-x\) ta có:
\(\left(\sqrt{x^2+2017}-x\right)\left(x+\sqrt{x^2+2017}\right)\left(y+\sqrt{y^2+2017}\right)=2017\left(\sqrt{x^2+2017}-x\right)\)
\(\Leftrightarrow\left(x^2+2017-x^2\right)\left(y+\sqrt{y^2+2017}\right)=2017\left(\sqrt{x^2+2017}-x\right)\)
\(\Leftrightarrow2017\left(y+\sqrt{y^2+2017}\right)=2017\left(\sqrt{x^2+2017}-x\right)\)
\(\Leftrightarrow y+\sqrt{y^2+2017}=\sqrt{x^2+2017}-x\)
Tương tự cũng có: \(x+\sqrt{x^2+2017}=\sqrt{y^2+2017}-y\)
Cộng theo vế 2 đẳng thức trên ta có:
\(2\left(x+y\right)=0\Leftrightarrow x+y=0\Leftrightarrow x=-y\)
\(\Rightarrow-3y+y^2=4\Rightarrow\orbr{\begin{cases}y=-1\\y=4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)