![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng bđt AM-GM\(3\left(3x-2\right)^2+\frac{8x}{y}=3\left(9x^2-12x+4\right)+\frac{8x}{y}\)
\(=27x^2-36x+12+\frac{8x}{y}=27x^2-24x+12y+\frac{8x}{y}\)
\(=\left(24x^2+4y+\frac{16x}{3y}\right)+\left(3x^2+8y+\frac{8x}{3y}\right)-24x\)
\(\ge3\sqrt[3]{24x^2.4y.\frac{16x}{3y}}+\left(3x^2+8y+\frac{8x}{3y}\right)-24x=3x^2+8y+\frac{8x}{3y}\)
\(=\left(3x^2+\frac{y}{2}+\frac{2x}{3y}\right)+\left(\frac{15}{2}y+\frac{2x}{y}\right)\ge3\sqrt[3]{3x^2.\frac{y}{2}.\frac{2x}{3y}}+\left(\frac{15}{2}y+\frac{2x}{y}\right)=3x+\frac{15y}{2}+\frac{2x}{y}\)
\(=3x+\frac{15y}{2}+\frac{2x}{y}+2-2=3x+\frac{15y}{2}+\frac{2}{y}-2\)
\(=\left(3x+3y\right)+\left(\frac{9}{2}y+\frac{2}{y}\right)-2\ge3+2\sqrt{\frac{9y}{2}.\frac{2}{y}}-2=3+6-2=7\)
\("="\Leftrightarrow x=\frac{1}{3};y=\frac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt: \(VT=\frac{x^2}{y+2}+\frac{y^2}{z+2}+\frac{z^2}{x+2}\)
Theo BĐT Cauchy, ta có:
\(\frac{x^2}{y+2}+\frac{1}{9}\left(y+2\right)\ge\frac{2}{3}x\) và \(\frac{y^2}{z+2}+\frac{1}{9}\left(z+2\right)\ge\frac{2}{3}y\)và \(\frac{z^2}{x+2}+\frac{1}{9}\left(x+2\right)\ge\frac{2}{3}z\)
Cộng vế theo vế, ta có:
\(VT\ge\frac{2}{3}\left(x+y+z\right)-\frac{1}{9}\left(x+y+z+6\right)\)
\(\Leftrightarrow VT\ge\frac{5}{9}\left(x+y+z\right)-\frac{2}{3}\) ( 1 )
Theo BĐT Cauchy, ta chứng minh được:
@ \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Leftrightarrow3xyz\ge xy+yz+zx\Leftrightarrow3\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\Leftrightarrow\frac{1}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\ge\frac{1}{3}\)
@ \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Leftrightarrow\left(x+y+z\right)\ge\frac{9}{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\ge\frac{9}{3}=3\) ( 2 )
Từ (1) và (2) \(\Leftrightarrow VT\ge\frac{5}{9}.3-\frac{2}{3}=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)( thỏa đề bài )
![](https://rs.olm.vn/images/avt/0.png?1311)
cho\(\Delta ABC\)có 3 góc nhọn, đường cao BE, CF cắt nhau tại H. Qua A vẽ các đường thảng song song với BE và CF lần lượt cắt các đường thẳng CF và BE tại P và Q
1) CM: AH.AB=QA.BC
2)CM: BF.BA+CE.CA=BC2
3) Đường trung tuyến AM của tam giác ABC cắt PQ tại K. CM: 4 điểm A, K, E, Q cùng thuộc một đường tròn
![](https://rs.olm.vn/images/avt/0.png?1311)
(*) CM BĐT : \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\) ( biến đổi tương đương là được )
Áp dụng :
\(2\left[\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\right]\ge\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2\)
TA có : \(x+\frac{1}{x}+y+\frac{1}{y}=4x+\frac{1}{x}+4y+\frac{1}{y}-3\left(x+y\right)\)
\(\ge4+4-3=5\) ( theo cô - si )
=> 2\(2\left[\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\right]\ge25\) => ĐPCM
Dấu '' = '' xảy ra khi x = y= 0,5
Áp dụng cỉu gì nhể
3x + 5y = 7 => x = \(\frac{7-5y}{3}\)
=> \(x^2+y^2=\frac{\left(7-5y\right)^2}{9}+y^2=\frac{49-70y+25y^2+9y^2}{9}=\frac{34y^2-70y+49}{9}\)
34y2 - 70y + 49 = 34. (y2 - 2.y. \(\frac{35}{34}\) + \(\left(\frac{35}{34}\right)^2\)) - \(\frac{35^2}{34}\) + 49 = \(34.\left(y-\frac{35}{34}\right)^2+\frac{441}{34}\)
=> \(x^2+y^2=\frac{34}{9}\left(y-\frac{35}{34}\right)^2+\frac{49}{34}\ge0+\frac{49}{34}=\frac{49}{34}\)
Dấu "=" xảy ra <=> y = 35/34 ; x = 21/34