Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3x+4y=5\)
\(\Leftrightarrow x=\frac{5-4y}{3}\)
Ta cần chứng minh:
\(x^2+y^2\ge1\)
\(\Leftrightarrow\left(\frac{5-4y}{3}\right)^2+y^2-1\ge0\)
\(\Leftrightarrow25y^2-40y+16\ge0\)
\(\Leftrightarrow\left(5y-4\right)^2\ge0\)(đúng)
Ta có : \(3x+4y=5\Rightarrow y=\frac{5-3x}{4}\)
\(\Rightarrow x^2+y^2=x^2+\frac{\left(5-3x\right)^2}{16}=x^2+\frac{9x^2-30x+25}{16}\)
\(=\frac{16x^2+9x^2-30x+25}{16}=\frac{25x^2-30x+25}{16}=\frac{\left(25x^2-30x+9\right)+16}{16}\)
\(=\frac{\left(5x-3\right)^2+16}{16}\ge\frac{16}{16}=1\)(đpcm)
Câu hỏi của kudo shinichi - Toán lớp 8 - Học toán với OnlineMath
Cho y ở đề bài làm gì trong khi biểu thức ở vế trái bên dưới ko có y?
nếu bài yêu cầu giải phương trình thì thế này ạ
\(3x^2-6x+4y^2-4xy+4y+3=0\)
\(x^2+4y^2+1-4xy+4y-6x+2x^2-4x+2=0\)
\(\left(2y-x+1\right)^2+2\left(x-1\right)^2=0\)
mà \(\left(2y-x+1\right)^2,\left(x-1\right)^2\ge0\)
\(\int^{x-1=0}_{2y-x+1=0}\Leftrightarrow\int^{x=1}_{y=0}\)
Ta có : b, \((3x-2y)^2=9x^2-12xy+4y^2=20xy-12xy=8xy\)
\(\Rightarrow3x-2y=\sqrt{8xy}\) \((1)\)
\((3x+2y)^2=9x^2+12xy+4y^2=20xy+12xy=32xy\)
\(\Rightarrow3x+2y=\sqrt{32xy}\) \((2)\)
Từ \((1)\) và \((2)\), suy ra :
\(\Rightarrow\frac{3x-2y}{3x+2y}=\frac{\sqrt{8xy}}{\sqrt{32xy}}=0,5\)
Ta có: \(3x-4y=7\) \(\Rightarrow x=\dfrac{7+4y}{3}\)
Thay vào ta được:
\(3.\left(\dfrac{7+4y}{3}\right)^2+4y^2=3.\dfrac{49+56y+16y^2}{9}+4y^2\)
\(=\dfrac{147+168y+48y^2+36y^2}{9}=\dfrac{84y^2+168y+147}{9}=\dfrac{84\left(y^2+2y+\dfrac{7}{4}\right)}{9}=\dfrac{84\left(y+1\right)^2+63}{9}\ge\dfrac{63}{9}=7\)⇒ ĐPCM