Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo cái này: https://hoidap247.com/cau-hoi/330556
Nếu là chia hết 49 thì bạn tham khảo cái này: https://hoidap247.com/cau-hoi/330556
1) \(\left(3x+5y\right)\left(x+4y\right)⋮7\)
\(\Leftrightarrow\orbr{\begin{cases}3x+5y⋮7\\x+4y⋮7\end{cases}}\)
Ta có: \(\left(3x+5y\right)⋮7\Leftrightarrow5\left(3x+5y\right)=15x+25y=\left(x+4y\right)+2.7x+3.7y⋮7\)
\(\Leftrightarrow\left(x+4y\right)⋮7\)
Do đó \(\hept{\begin{cases}3x+5y⋮7\\x+4y⋮7\end{cases}}\)
Suy ra \(\left(3x+5y\right)\left(x+4y\right)⋮\left(7.7\right)\Leftrightarrow\left(3x+5y\right)\left(x+4y\right)⋮49\)(ta có đpcm)
2) \(n^3-n=n\left(n^2-1\right)=n\left(n^2-n+n-1\right)=n\left[n\left(n-1\right)+\left(n-1\right)\right]\)
\(=n\left(n-1\right)\left(n+1\right)\)
Có \(n\left(n-1\right)\left(n+1\right)\)là tích của ba số nguyên liên tiếp mà trong ba số \(n-1,n,n+1\)có ít nhất một số chia hết cho \(2\), một số chia hết cho \(3\). Kết hợp với \(\left(2,3\right)=1\)
Suy ra \(n\left(n-1\right)\left(n+1\right)\)chia hết cho \(2.3=6\).
Nếu x+2y chia hết cho 5
=> 3.(x+2y) chia hết cho 5
=> 3x+6y chia hết cho 5
Mà 10y chia hết cho 5
=> (3x+6y)-10y chia hết cho 5
=> 3x-4y chia hết cho 5
Vậy 3x-4y chia hết cho 5
Ta có: 2(x+2y)+(3x-4y)=2x+4y+3x-4y=5x chia hết cho 5
Mà : 2(x+2y)chia hết cho 5 (Vì x+2y chia hết cho 5)
Nên: 3x-4y chia hết cho 5
chính xác rùi đó!
3x + 5y chia hết cho 7
3x + 5y +7y chia hết cho 7
3x + 12y chia hết cho 7
3(x + 4y) chia hết cho 7
( 3 , 7) = 1
Vậy x+ 4y chia hết cho 7
b) x + 4y chia hết cho 7
3(x + 4y) chia hết cho 7
3x + 12y chia hết cho 7
3x + 12y - 7y chia hết cho 7
3x + 5y chia hết cho 7
< = > Điều ngược lại đúng