\(|\)| 3x-3| + 2x + (-1)2016\(|\)= 3x+2017...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\dfrac{3x+2}{5x+7}=\dfrac{3x-1}{5x+1}\)

\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(3x-1\right)\left(5x+7\right)\)

\(\Leftrightarrow15x^2+3x+10x+2=15x^2+21x-5x-7\)

=>16x-7=13x+2

=>3x=9

hay x=3

b: \(\dfrac{x+1}{2016}+\dfrac{x}{2017}=\dfrac{x+2}{2015}+\dfrac{x+3}{2014}\)

\(\Leftrightarrow\left(\dfrac{x+1}{2016}+1\right)+\left(\dfrac{x}{2017}+1\right)=\left(\dfrac{x+2}{2015}+1\right)+\left(\dfrac{x+3}{2014}+1\right)\)

=>x+2017=0

hay x=-2017

e: \(\left(2x-3\right)^2=144\)

=>2x-3=12 hoặc 2x-3=-12

=>2x=15 hoặc 2x=-9

=>x=15/2 hoặc x=-9/2

11 tháng 2 2018

a,\(\dfrac{2}{7}x-\dfrac{1}{2}=\dfrac{3}{4}:\sqrt{\dfrac{49}{64}}\)

\(\Leftrightarrow\dfrac{2}{7}x-\dfrac{1}{2}=\dfrac{6}{7}\)

\(\Leftrightarrow\dfrac{2}{7}x=\dfrac{19}{14}\)

\(\Leftrightarrow x=\dfrac{19}{4}\)

11 tháng 2 2018

Với mọi \(x\in R\)

\(\left|x+2016\right|+\left|x+2017\right|+\left|x+2018\right|\ge0\Leftrightarrow6x\ge0\Leftrightarrow x\ge0\)

với \(x\ge0\) ta được: \(\left\{{}\begin{matrix}\left|x+2016\right|=x+2016\\\left|x+2017\right|=x+2017\\\left|x+2018\right|=x+2018\end{matrix}\right.\)

\(pt\Leftrightarrow3x+6051=6x\Leftrightarrow3x=6051\Leftrightarrow x=2017\)

8 tháng 8 2017

1) a) \(x^2=2x\Leftrightarrow x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\) vậy \(x=0;x=2\)

b) \(x^3=x\Leftrightarrow x^3-x=0\Leftrightarrow x\left(x^2-1\right)=0\) \(\Leftrightarrow x\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+1=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\) vậy \(x=0;x=-1;x=1\)

8 tháng 8 2017

\(x^2=2x\Rightarrow x^2-2x=0\Rightarrow x\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-2=0\Rightarrow x=2\end{matrix}\right.\)

\(x^3=x\Rightarrow x^3-x=0\Rightarrow x\left(x^2-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-1=0\Rightarrow x^2=1\Rightarrow x=\pm1\end{matrix}\right.\)

\(A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{16}-1\right)\left(\dfrac{1}{25}-1\right)...\left(\dfrac{1}{121}-1\right)\)

\(A=\dfrac{-3}{4}.\dfrac{-8}{9}.\dfrac{-15}{16}.\dfrac{-24}{25}...\dfrac{-120}{121}\)

\(A=\dfrac{3.8.15.24....120}{4.9.16.25...121}\)

\(A=\dfrac{1.3.2.4.3.5.4.6....10.12}{2.2.3.3.4.4.5.5....11.11}\)

\(A=\dfrac{1.2.4....10}{2.3.4.5...11}.\dfrac{3.4.5....12}{2.3.4.5....11}\)

\(A=\dfrac{1}{11}.6=\dfrac{6}{11}\)

3) Áp dụng tính chất:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(B=\dfrac{8^{2017}+1}{8^{2018}+1}< 1\)

\(B< \dfrac{8^{2017}+1+8}{8^{2018}+1+8}\)

\(B< \dfrac{8^{2017}+8}{8^{2018}+8}\)

\(B< \dfrac{8\left(8^{2016}+1\right)}{8\left(8^{2017}+1\right)}\)

\(B< \dfrac{8^{2016}+1}{8^{2017}+1}=A\)

\(B< A\)

20 tháng 11 2017

a) Ta có: \(\left(2x+\frac{1}{4}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{4}\right)^4+6\ge6\)

Dấu "=" xảy ra khi \(2x+\frac{1}{4}=0\Rightarrow2x=\frac{-1}{4}\Rightarrow x=\frac{-1}{8}\)

Vậy Emin = 6 \(\Leftrightarrow x=\frac{-1}{8}\)

b) Ta có: \(\left(5-3x\right)^2\ge0\Rightarrow\left(5-3x\right)^2-2013\ge-2013\)

Dấu "=" xảy ra khi \(5-3x=0\Rightarrow3x=5\Rightarrow x=\frac{5}{3}\)

Vậy Emin = -2013 \(\Leftrightarrow x=\frac{5}{3}\)

Mấy bài còn lại làm tương tự.

20 tháng 11 2017

6

-2013

2013

-1

2014

2016

b: \(\dfrac{2x+3}{3-x}\le0\)

\(\Leftrightarrow\dfrac{2x+3}{x-3}\ge0\)

=>x>3 hoặc x<=-3/2

c: \(\dfrac{x+5}{x+3}>1\)

\(\Leftrightarrow\dfrac{x+5-x-3}{x+3}>0\)

=>2/(x+3)>0

=>x+3>0

hay x>-3

29 tháng 12 2019

đề chắc sai rồi. P phải \(\ge\)0 với mọi x chứ

vì 2x4 + 3x2 + 1 > 0 ; -2x4 - x2 - 1 < 0

\(\Rightarrow\)| 2x4 + 3x2 + 1 | = 2x4 + 3x2 + 1 ; | -2x4 - x2 - 1 | = 2x4 + x2 + 1

Nên P = 2x4 + 3x2 + 1 - ( 2x4 + x2 + 1 ) = 2x2 \(\ge\)0 với mọi x

30 tháng 6 2017

1) a) \(3x\left(x-\dfrac{2}{3}\right)=0\Leftrightarrow\left\{{}\begin{matrix}3x=0\\x-\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

vậy \(x=0;x=\dfrac{3}{2}\)

b) \(7\left(x-1\right)+2x\left(1-x\right)=0\Leftrightarrow7x-7+2x-2x^2=0\)

\(\Leftrightarrow\) \(-2x^2+9x-7=0\)

\(\Delta=9^2-4.\left(-2\right)\left(-7\right)=81-56=25>0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(x_1=\dfrac{-9+5}{-4}=1\)

\(x_2=\dfrac{-9-5}{-4}=\dfrac{7}{2}\)

vậy \(x=1;x=\dfrac{7}{2}\)

30 tháng 6 2017

câu 4 thế vào ; bấm máy tính hehe

20 tháng 11 2017

a, Ta có: \(\left(2x+\dfrac{1}{4}\right)^4\ge0\rightarrow\left(2x+\dfrac{1}{4}\right)^4+6\ge6\)

Dấu ''=" xảy ra khi \(2x+\dfrac{1}{4}=0\rightarrow2x=\dfrac{-1}{4}\rightarrow x=\dfrac{-1}{8}\)

Vậy MinE=6\(\Leftrightarrow x=\dfrac{-1}{8}\)

b, Ta có: \(\left(5-3x\right)^2\ge0\rightarrow\left(5-3x\right)^2-2013\ge-2013\)

Dấu ''='' xảy ra khi \(5-3x=0\rightarrow3x=5\rightarrow x=\dfrac{5}{3}\)

Vậy MinE=-2013\(\Leftrightarrow x=\dfrac{5}{3}\)

20 tháng 11 2017

a) \(E=\left(2x+\dfrac{1}{4}\right)^4+6\)

\(\left(2x+\dfrac{1}{4}\right)^4\ge0\)

Nên \(\left(2x+\dfrac{1}{4}\right)^4+6\ge6\)

Vậy GTNN của \(E=6\) khi \(2x+\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{-1}{8}\)

b) \(E=\left(5-3x\right)^2-2013\)

\(\left(5-3x\right)^2\ge0\)

Nên \(\left(5-3x\right)^2-2013\ge-2013\)

Vậy GTNN của \(E=-2013\) khi \(5-3x=0\Leftrightarrow x=\dfrac{5}{3}\)

c) \(A=2013+\left|2x-3\right|\)

\(\left|2x-3\right|\ge0\)

Nên \(2013+\left|2x-3\right|\ge2013\)

Vậy GTNN của \(A=2013\) khi \(2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)

d) \(B=-1+\left|\dfrac{1}{2}x-3\right|\)

\(\left|\dfrac{1}{2}x-3\right|\ge0\)

Nên \(-1+\left|\dfrac{1}{2}x-3\right|\ge-1\)

Vậy GTNN của \(B=-1\) khi \(\dfrac{1}{2}x-3=0\Leftrightarrow x=6\)