Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(3a^2+3b^2=10ab\Rightarrow a^2+b^2=\frac{10ab}{3}\)
hay: \(a^2+b^2=\frac{10}{3}ab\Rightarrow a^2+b^2+2ab=\frac{10}{3}ab+2ab\Rightarrow\left(a+b\right)^2=\frac{16}{3}ab\) (1)
\(a^2+b^2=\frac{10}{3}ab\Rightarrow a^2+b^2-2ab=\frac{10}{3}ab-2ab\Rightarrow\left(a-b\right)^2=\frac{4}{3}ab\) (2)
Ta có \(p=\frac{a+b}{a-b}\Rightarrow p^2=\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\frac{\frac{16}{3}ab}{\frac{4}{3}ab}=4\) Vậy \(p=2\) hoặc \(p=-2\)
ta có 3a^2 +3b^2=10ab
<=> 3a(a-3b) - b(a-3b)=0
<=> (3a-b)(a-3b)=0
=> a=3b ; 3a=b (loại vì a>b>0)
thay a=3b
ta có P=3b-b/3a+b
= 2b/4b
=1/2
\(3a^2+3b^2=10ab\Leftrightarrow\left(3a^2-9ab\right)+\left(3b^2-ab\right)=0\)
\(\Leftrightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)
Do \(a>b>0\Rightarrow3a-b>0\Rightarrow a=3b\)
\(P=\frac{a-b}{a+b}=\frac{3b-b}{3b+b}=\frac{2b}{4b}=\frac{1}{2}\)
Vì \(b>a>0\Rightarrow P=\frac{a-b}{a+b}< 0\)
Ta có : \(P^2=\frac{\left(a-b\right)^2}{\left(a+b\right)^2}=\frac{a^2-2ab+b^2}{a^2+2ab+b^2}=\frac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\frac{10ab-6ab}{10ab+6ab}=\frac{4}{16}\)
\(\Rightarrow\orbr{\begin{cases}P=-\frac{1}{2}\\P=\frac{1}{2}\end{cases}}\) Mà P < 0 nên \(P=-\frac{1}{2}\)
Vậy \(P=\frac{a-b}{a+b}=-\frac{1}{2}\)
Ta có : \(3a^2+3b^2=10ab\Rightarrow3a^2+3b^2-10ab=0\)
\(\Rightarrow\left(4a^2-8ab+4a^2\right)-\left(a^2+2ab+b^2\right)=0\)
\(\Rightarrow\left(2a-2b\right)^2=\left(a+b\right)^2\Rightarrow2a-2b=a+b\Rightarrow a=3b\)
\(\Rightarrow D=\dfrac{a-b}{a+b}=\dfrac{3b-b}{3b+b}=\dfrac{1}{2}\)
ta có 3a2 + 3b2 = 10ab
=> 3a2 + 3b2 - 9ab-ab = 0 => ( 3a2 - 9ab ) - ( ab - 3b2 )
=> ( a-3b ) (3a-b) = 0 => a=3b or 3a=b
vì b>a>0 => 3a = b
rùi bạn thay b bằng 3a rùi tính như thường thui
nhớ tick nghe chưa k là k giải nữa đâu