Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{\left(2^4\right)^3.3^{10}+2^3.3.5.\left(2.3\right)^9}{\left(2^2\right)^6.3^{12}+\left(2.3\right)^{11}}\)= \(\frac{2^{12}.3^{10}+2^3.3.5.2^9.3^9}{2^{12}.3^{12}+2^{11}.3^{11}}\)
= \(\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}+2^{11}.3^{11}}\)= \(\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3+1\right)}\)= \(\frac{2.6}{3.7}=\frac{4}{7}\)
c, theo đề bài ta có :
x2 = yz, y2 = xz , z2 = xy
\(\Rightarrow\frac{x}{y}=\frac{z}{x},\frac{y}{x}=\frac{z}{y},\frac{z}{x}=\frac{y}{z}\Rightarrow\frac{x}{y}=\frac{z}{x}=\frac{y}{z}\)
AD t/c DTSBN, ta có
\(\frac{x}{y}=\frac{z}{x}=\frac{y}{z}\Rightarrow\frac{X+z+y}{y+x+z}=1\)
x= 1y
z= 1x
y= 1z
=> x = y = x
Do x; y ; z > 0 nên xyz khác 0 => \(\frac{xy}{xyz}+\frac{yz}{xyz}+\frac{zx}{xyz}=1\Rightarrow\frac{1}{z}+\frac{1}{x}+\frac{1}{y}=1\Rightarrow\frac{1}{x}<1\Rightarrow x>1\)
Vì x<= y< = z nên \(\frac{1}{x}\ge\frac{1}{y}\ge\frac{1}{z}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{x}+\frac{1}{x}+\frac{1}{x}=\frac{3}{x}\)
=> 1 < = 3/x => x < = 3 mà x > 1 nên x = 2 hoặc 3
Nếu x = 2 => \(\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\Rightarrow\frac{1}{y}<\frac{1}{2}\Rightarrow y>2;\frac{1}{y}+\frac{1}{z}\le\frac{2}{y}\Rightarrow\frac{2}{y}\ge\frac{1}{2}\Rightarrow y\le4\)
mà y >2 => y = 3 hoặc 4
y = 3 => z = 6;
y = 4 => z = 4
nếu x = 3 => \(\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\Rightarrow\frac{1}{y}<\frac{2}{3}\Rightarrow y>\frac{3}{2};\frac{1}{y}+\frac{1}{z}\le\frac{2}{y}\Rightarrow\frac{2}{y}\ge\frac{2}{3}\Rightarrow y\le3\)
theo đề bài x<= y nên y = 3 => z = 3
Vậy (x;y;z) = (3;3;3); (2;3;6);(2;4;4)
ta có x, y , z, t # 0
lấy y.t : y.z = 48/24 = 2
hay t = 2.z kết hợp điều này với t.z = 32 ta sẽ có
t = 4 vậy z =8, y = 3 , x =4
t = -4. z = -8 , y = -3 , x= -4
\(xy=-30\Rightarrow\frac{x}{-30}=\frac{1}{y}\)
\(yz=42\Rightarrow\frac{z}{42}=\frac{y}{1}\)
\(\Rightarrow\frac{x}{30}=\frac{z}{42}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{-30}=\frac{z}{42}=\frac{z-x}{42-\left(-30\right)}=-\frac{12}{72}=-\frac{1}{6}\)
\(\frac{x}{-30}=\frac{1}{-6}\Rightarrow x=5\)
\(\frac{z}{42}=-\frac{1}{6}\Rightarrow z=-7\)
Ta có xy = -30
=> y = -30 : x = -30 : 5 = -6
Vậy y = -6; x = 5 ; z= -7
ta có xy=-30=>. x=-30/y
yz=42=> z=42/y
thay vào z-x=-12 ta được :\(\frac{42}{y}+\frac{30}{y}=-12\)
<=> y=-6
ta có y=-6=> x=-30/-6=5
y=-6=>z=42/-6=-7
vậy (x,y,z) là (5;-6;-7)