Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\sqrt{1\left(x-1\right)}}{x}\le\dfrac{1+x-1}{2x}=\dfrac{1}{2}\) ( cauchy )
TT,\(\dfrac{\sqrt{y-2}}{y}\le\dfrac{1}{2\sqrt{2}};\dfrac{\sqrt{z-3}}{z}\le\dfrac{1}{2\sqrt{3}}\)
cộng vế theo vế => đpcm
Thì biết pass facebook thôi chứ cũng không biết có hack không
Bạn ấy đăng nhập bằng FACEBOOK mà
Lời giải:
Đặt \((\frac{1}{x}; \frac{1}{y}; \frac{1}{z})=(a,b,c)\). Bài toán trở thành:
Cho $a,b,c>0$ thỏa mãn $a+b+c=1$. CMR:
\(\frac{\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}}{\sqrt{abc}}\geq \sqrt{\frac{1}{abc}}+\sqrt{\frac{1}{a}}+\sqrt{\frac{1}{b}}+\sqrt{\frac{1}{c}}(*)\)
----------------------------------
Do $a+b+c=1$ nên ta có:
\(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}=\sqrt{a(a+b+c)+bc}+\sqrt{b(a+b+c)}+\sqrt{c(a+b+c)+ab}\)
\(=\sqrt{(a+b)(a+c)}+\sqrt{(b+a)(b+c)}+\sqrt{(c+a)(c+b)}\)
Mà áp dụng BĐT Bunhiacopxky:
\(\sqrt{(a+b)(a+c)}+\sqrt{(b+c)(b+a)}+\sqrt{(c+a)(c+b)}\geq \sqrt{(a+\sqrt{bc})^2}+\sqrt{(b+\sqrt{ac})^2}+\sqrt{(c+\sqrt{ab})^2}\)
\(=a+\sqrt{bc}+b+\sqrt{ac}+c+\sqrt{ab}=a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
\(1+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
Vậy:\(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\geq 1+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
\(\Rightarrow \frac{\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}}{\sqrt{abc}}\geq \sqrt{\frac{1}{abc}}+\sqrt{\frac{1}{a}}+\sqrt{\frac{1}{b}}+\sqrt{\frac{1}{c}}\)
$(*)$ được cm. BĐT hoàn thành. Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$ hay $x=y=z=3$
solution:
ta có: \(3=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Leftrightarrow xyz\le1\)(theo BĐT cauchy cho 3 số )
\(\Rightarrow xy\le\dfrac{1}{z};yz\le\dfrac{1}{x};xz\le\dfrac{1}{y}\)
\(\Rightarrow\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{x}{\dfrac{1}{\sqrt[3]{x}}}=x\sqrt[3]{x}=\sqrt[3]{x^4}\)
tương tự ta có:\(\dfrac{y}{\sqrt[3]{xz}}\ge\sqrt[3]{y^4};\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{z^4}\)
cả 2 vế các BĐT đều dương,cộng vế với vế:
\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\)
Áp dụng BĐT bunyakovsky ta có:
\(\left(\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\right)\left(x^2+y^2+z^2\right)\ge\left(\sqrt[3]{x^8}+\sqrt[3]{y^8}+\sqrt[3]{z^8}\right)^2=\left(x^2+y^2+z^2\right)^2\)
\(\Rightarrow S\ge x^2+y^2+z^2\)
đến đây ta lại có BĐT quen thuộc: \(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Rightarrow S\ge xy+yz+xz\left(đpcm\right)\)
dấu = xảy ra khi và chỉ khi x=y=z mà x2+y2+z2=3 => x=y=z=1
*cách khác : Áp dụng BĐT cauchy - schwarz(bunyakovsky):
\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}=\dfrac{x^4}{x^3.\dfrac{1}{\sqrt[3]{x}}}+\dfrac{y^4}{y^3.\dfrac{1}{\sqrt[3]{y}}}+\dfrac{z^4}{z^3.\dfrac{1}{\sqrt[3]{z}}}\)
\(S\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge xy+yz+xz\)
Lời giải:
Đặt \((\sqrt{x}, \sqrt{y}, \sqrt{z})=(a,b,c)\Rightarrow abc=1\)
Bài toán trở thành chứng minh:
\(\frac{1}{(ab+a+1)^2}+\frac{1}{(bc+b+1)^2}+\frac{1}{(ca+c+1)^2}\geq \frac{1}{3}\)
------------
Áp dụng 1 kết quả quen thuộc của BĐT AM-GM: \(x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}\) ta có:
\(\frac{1}{(ab+a+1)^2}+\frac{1}{(bc+b+1)^2}+\frac{1}{(ca+c+1)^2}\geq \frac{1}{3}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)^2\)
Mà:
\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=\frac{c}{abc+ac+c}+\frac{ac}{bc.ac+b.ac+ac}+\frac{1}{ac+c+1}\)
\(=\frac{c}{1+ac+c}+\frac{ac}{c+1+ac}+\frac{1}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\) (thay $abc=1$)
Do đó:
\(\frac{1}{(ab+a+1)^2}+\frac{1}{(bc+b+1)^2}+\frac{1}{(ca+c+1)^2}\geq \frac{1}{3}.1^2=\frac{1}{3}\) (đpcm)
Dâu bằng xảy ra khi $a=b=c=1$ hay $x=y=z=1$
Áp dụng BĐT AM-GM, Ta có
\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\Rightarrow yz\sqrt{x-1}\le\dfrac{xyz}{2}\)
Mà \(xz\sqrt{y-2}\le\dfrac{xz\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\)
\(yx\sqrt{z-3}\le yx.\dfrac{3+z-3}{2\sqrt{3}}=\dfrac{xyz}{2\sqrt{3}}\)
\(\Rightarrow\dfrac{xy\sqrt{x-1}+xz\sqrt{y-2}+yz\sqrt{z-3}}{xyz}\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}=\dfrac{1}{2}+\dfrac{\sqrt{2}}{4}+\dfrac{\sqrt{3}}{6}\)
Ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\) \(\ge\) \(\dfrac{2}{\sqrt{xy}}\) (1)
\(\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{yz}}\) (2)
\(\dfrac{1}{z}+\dfrac{1}{x}\ge\dfrac{2}{\sqrt{xz}}\) (3)
Cộng (1);(2);(3) vế theo vế ta được:
\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge2\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)
=> \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\) (đpcm)
Áp dụng BĐT AM-GM:
\(VT=\sum\dfrac{\sqrt{\left(x+y\right)^2-xy}}{4yz+1}\ge\sum\dfrac{\sqrt{\left(x+y\right)^2-\dfrac{1}{4}\left(x+y\right)^2}}{\left(y+z\right)^2+1}=\sum\dfrac{\dfrac{\sqrt{3}}{2}\left(x+y\right)}{\left(y+z\right)^2+1}\)
Set \(\left\{{}\begin{matrix}x+y=a\\y+z=b\\z+x=c\end{matrix}\right.\)thì giả thiết trở thành \(a+b+c=3\) và cần chứng minh \(\dfrac{\sqrt{3}}{2}.\sum\dfrac{a}{b^2+1}\ge\dfrac{3\sqrt{3}}{4}\)
\(\Leftrightarrow\sum\dfrac{a}{b^2+1}\ge\dfrac{3}{2}\)( đến đây quen thuộc rồi)
Ta có:\(\sum\dfrac{a}{b^2+1}=\sum a-\sum\dfrac{ab^2}{b^2+1}\ge3-\sum\dfrac{ab^2}{2b}\)(AM-GM)
\(VT\ge3-\sum\dfrac{ab}{2}\ge3-\dfrac{\dfrac{1}{3}\left(a+b+c\right)^2}{2}=\dfrac{3}{2}\)( AM-GM)
Vậy ta có đpcm.Dấu = xảy ra khi a=b=c=1 hay \(x=y=z=\dfrac{1}{2}\)
Lời giải:
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow xy+yz+xz=xyz\)
\(\Rightarrow x^2+xy+yz+xz=x^2+xyz=x(x+yz)\)
\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+xz}{x}=\frac{(x+y)(x+z)}{x}\)
\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\)
Áp dụng BĐT Bunhiacopxky:\((x+y)(x+z)\geq (x+\sqrt{yz})^2\)
\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}\)
Hoàn toàn tương tự:
\(\sqrt{y+xz}\geq \frac{y+\sqrt{xz}}{\sqrt{y}}\); \(\sqrt{z+xy}\geq \frac{z+\sqrt{xy}}{\sqrt{z}}\)
Cộng theo vế các BĐT đã thu được ta có:
\(\text{VT}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{xz}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xy+yz+xz}{\sqrt{xyz}}\)
\(\Leftrightarrow \text{VT}\geq \sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}=\text{VP}\)
Do đó ta có đpcm.
Dấu bằng xảy ra khi \(x=y=z=3\)