\(\frac{a}{b+c}=\frac{b}{a+c}=\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

cho 3 số tự nhiên a,b,c khác 0 và khác nhau thỏa mãn đk:ab+c =ba+c =ca+b .tính gtrị bthức:

p=b+ca +a+cb +a+bc 

29 tháng 10 2017

tk hả

19 tháng 1 2017

Ta có: \(a^2+b^2+c^2=\left(a+b+c\right)^2\)

\(\Leftrightarrow ab+bc+ca=0\)

Ta có: \(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)

\(=\frac{1}{a^2+2bc-ab-bc-ca}+\frac{1}{b^2+2ca-ab-bc-ca}+\frac{1}{c^2+2ab-ab-bc-ca}\)

\(=\frac{1}{a^2+bc-ca-ab}+\frac{1}{b^2+ca-ab-bc}+\frac{1}{c^2+ab-bc-ca}\)

\(=-\left(\frac{1}{\left(a-b\right)\left(c-a\right)}+\frac{1}{\left(b-c\right)\left(a-b\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)}\right)\)

\(=-\frac{b-c+c-a+a-b+}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

PS: Hồi tối lười để người khác làm mà không ai làm thôi t làm vậy

18 tháng 1 2017

( a+b+c)^2 = a^2 + b^2 + c^2 

=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ac = a^2 + b^2 + c^2 

=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ac - a^2 - b^2 - c^2 = 0 

=> 2ab + 2bc + 2ac = 0 

ta có 

A = \(\frac{1}{a^2+2bc}\)\(\frac{1}{b^2+2ac}\)\(\frac{1}{c^2+2ab}\)

=  \(\frac{1}{a^2+2bc}\)\(\frac{1}{b^2+2ac}\)\(\frac{1}{c^2+2ab}\) + 2ab + 2bc + 2ac 

đến đây bạn nhóm lại nhé mk giải ra thì dài lắm nên chỉ gợi ý cho bn đấy đây thôi

8 tháng 3 2018

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\)

<=> \(1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

<=>\(\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)

<=>\(b.\frac{b+c-a-b}{\left(a+b\right)\left(b+c\right)}+d.\frac{d+a-c-d}{\left(c+d\right)\left(d+a\right)}=0\)

<=>\(\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

<=>\(\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}-\frac{d\left(c-a\right)}{\left(c+d\right)\left(d+a\right)}=0\)

<=>\(\left(c-a\right).\frac{b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+d\right)\left(d+a\right)}=0\)

<=> \(\orbr{\begin{cases}c-a=0\\b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)=0\end{cases}}\)

<=>\(\orbr{\begin{cases}c=a\left(KTM\right)\\abc-acd+bd^2-b^2d=0\end{cases}}\)

<=>\(\left(b-d\right)\left(ac-bd\right)=0< =>\orbr{\begin{cases}b-d=0\\ac-bd=0\end{cases}< =>\orbr{\begin{cases}b=d\left(KTM\right)\\ac=bd\end{cases}}}\)

=> \(abcd=\left(ac\right)^2\)  => \(abcd\)là số chính phương ( ĐPCM)

----Tk mình nha----

~~Hk tốt~~

8 tháng 10 2019

Ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+a+b+c=2+2018\)

\(\Leftrightarrow\frac{a+ab+bc}{b+c}+\frac{b+bc+ab}{c+a}+\frac{c+ac+bc}{a+b}=2020\)

\(\Leftrightarrow a\left(\frac{1+b+c}{b+c}\right)+b\left(\frac{1+a+c}{a+c}\right)+c\left(\frac{1+a+b}{a+b}\right)=2020\left(1\right)\)

Vì \(a+b+c=2018\Rightarrow\hept{\begin{cases}a+b=2018-c\\b+c=2018-a\\c+a=2018-b\end{cases}\left(2\right)}\)

Thay (2) vào (1) ta được: 

\(a\left(\frac{2019-a}{b+c}\right)+b\left(\frac{2019-b}{a+c}\right)+c\left(\frac{2019-c}{a+b}\right)=2020\)

\(\Leftrightarrow\frac{2019a-a^2}{b+c}+\frac{2019b-b^2}{a+c}+\frac{2019c-c^2}{a+b}=2020\)

\(\Leftrightarrow\frac{2019a}{b+c}-\frac{a^2}{b+c}+\frac{2019b}{a+c}-\frac{b^2}{a+c}+\frac{2019c}{a+b}-\frac{c^2}{a+b}=2020\)

\(\Leftrightarrow2019\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(\frac{a^2}{c+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)=2020\)

\(\Leftrightarrow4038-\left(\frac{a^2}{c+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)=2020\)( vì \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=2\))

\(\Leftrightarrow\frac{a^2}{c+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=2018\)

\(\Leftrightarrow\frac{a^2}{c+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+1=2019\)

30 tháng 7 2019

Nhân 2 vế của 2 ĐT đề bài ta có

\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=\frac{47}{10}\)

<=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\left(\frac{c}{a+c}+\frac{a}{a+c}\right)=\frac{47}{10}\)

=>\(P=\frac{17}{10}\)

Vậy \(P=\frac{17}{10}\)

Y
5 tháng 7 2019

\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)

+ TH1 : a + b + c = 0 ta có :

\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{c+a}{a}\)

\(=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=-1\)

+ TH2 : \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

Khi đó : \(A=\left(1+1\right)\cdot\left(1+1\right)\cdot\left(1+1\right)=8\)