K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 11 2019

\(2a^2+2b^2+2ab+2ac+2bc< 0\)

\(\Leftrightarrow\left(a+b+c\right)^2+a^2+b^2-c^2< 0\)

\(\Leftrightarrow a^2+b^2< c^2-\left(a+b+c\right)^2\le c^2\)

\(\Rightarrow a^2+b^2< c^2\)

15 tháng 7 2016

Ai trả lời giúp mk đi khocroi

15 tháng 7 2016

Áp dụng bất đẳng thức Bunhiacopxki, ta có : \(3=1.3=\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow a+b+c\le\sqrt{3}\) (1)

Lại có: \(\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{cases}\) .Cộng các bất đẳng thức theo vế được: \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow ab+bc+ac\le1\) (2)

Cộng (1) và (2) theo vế ta có điều phải chứng minh.

21 tháng 8 2016

Ta có

\(a< b+c\left(bđt\Delta\right)\)

\(\Rightarrow2a< a+b+c\)

\(\Rightarrow2a< 2\)

\(\Rightarrow a< 1\)

\(\Rightarrow-a>-1\)

\(\Rightarrow1-a>0\)

Tương tự với b và c

\(\Rightarrow\begin{cases}1-b>0\\1-c>0\end{cases}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)

\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca-abc>0\)

\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca>abc\)

\(\Rightarrow1-2+ab+bc+ca>abc\)

\(\Rightarrow-1+ab+bc+ca>abc\)

\(\Rightarrow-2+2ab+2bc+2ca>2abc\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca-2>2acb+a^2+b^2+c^2\)

Áp dụng hằng đẳng thức \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Rightarrow\left(a+b+c\right)^2-2>2abc+a^2+b^2+c^2\)

\(\Rightarrow2^2-2>2abc+a^2+b^2+c^2\)

\(\Rightarrow2abc+a^2+b^2+c^2< 2\)

đpcm

 

 

21 tháng 8 2016
Giả sử a>=b>=c. Ta có:
a<b+c => 2a<a+b+c=2=>a<1=> b<1,c<1
=> (1-a)(1-b)(1-c)>0. Rút gọn ta được
ab+bc+ca >1+abc
Ta lại có: (a+b+)^2 =a^2+b^2+c^2 +2(ab+bc+ca)
=> 4= a^2+b^2+c^2+2(ab+bc+ca)
=> 4> a^2+b^2+c^2+2(1+abc)=> 4>a^2+b^2+c^2+2+2abc
=> a^2+b^2_c^2+2abc<2 
 
AH
Akai Haruma
Giáo viên
15 tháng 2 2017

Lời giải:

Áp dụng bđt AM-GM:

\(a^2+2b^2+3=(a^2+b^2)+(b^2+1)+2\geq 2(ab+b+1)\)

\(\Rightarrow \frac{1}{a^2+2b^2+3}\leq \frac{1}{2(ab+b+1)}\). Tương tự với các phân thức còn lại:

\(\Rightarrow 2\text{VT}\leq \frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=A\)

Dựa vào đk \(abc=1\) dễ thấy \(A=1\).

Cách CM:

\(A=\frac{c}{1+bc+c}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=\frac{c+1}{bc+c+1}+\frac{bc}{c+1+bc}=1\) (đpcm)

\(\Rightarrow \text{VT}\leq \frac{1}{2}\)

Dấu bằng xảy ra khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

Đặt \(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)

Ta có \(A=(a-\frac{ab^2}{1+b^2})+(b-\frac{bc^2}{1+c^2})+(c-\frac{ca^2}{1+a^2})=3-\left ( \frac{ab^2}{1+b^2}+\frac{bc^2}{1+c^2}+\frac{ca^2}{1+a^2} \right )\)

Áp dụng bất đẳng thức AM-GM:

\(A\geq 3-\left ( \frac{ab^2}{2b}+\frac{bc^2}{2c}+\frac{ca^2}{3a} \right )=3-\frac{1}{2}(ab+bc+ac)\)

Cũng theo AM-GM

\(9=(a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq 3\)

\(\Rightarrow A\geq 3-\frac{3}{2}=\frac{3}{2}\)

Dấu $=$ xảy ra khi \(a=b=c=1\)

12 tháng 2 2020

Ta có: \(\frac{a}{b}\)<\(\frac{c}{d}\)-->ad<bc (b,d>0)

Gỉa sử \(\frac{a}{b}\)<\(\frac{ab+cd}{b^2+d^2}\) đúng

a (b2+d2)<b(ab+cd) (b,d>0)

<=> ab2+ad2<ab2+bcd

<=> ad2-bcd<0

<=> d(ad-bc)<0 (*)

mà d>0; ad<bc(cmt)--> ad-bc<0

nên (*) đúng.

cm tiếp vế kia cũng như thế rồi kết luận