Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)
Tương tự cộng vế theo vế thì
\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)
Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)
bài 4 có trên mạng nha chị.tí e làm cách khác
bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.
Chú ý: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\) là ok liền:D
Mấy bạn ơi , cho tớ hỏi:
Luật tính điểm hỏi đáp là gì?
Làm thế nào để câu trả lời của mình đứng đầu tiên trong các câu trả lời?
Ai trả lời nhanh mình tích cho.
Bạn tham khảo lời giải tại đây:
Câu hỏi của Phác Chí Mẫn - Toán lớp 9 | Học trực tuyến
Ta có : \(\sqrt{2a^2+ab+b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\)
Vì \(\frac{3}{4}\left(a-b\right)^2\ge0\forall a;b\Rightarrow\sqrt{2a^2+ab+b^2}\ge\sqrt{\frac{5}{4}}\left(a+b\right)\)( 1 )
Tương tự , ta có : \(\sqrt{2b^2+bc+c^2}\ge\sqrt{\frac{5}{4}}\left(b+c\right);\sqrt{2c^2+ac+a^2}\ge\sqrt{\frac{5}{4}}\left(a+c\right)\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow P\ge\sqrt{\frac{5}{4}}.2\left(a+b+c\right)=\sqrt{5}\left(a+b+c\right)\)
Áp dụng BĐT phụ \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\) , ta có :
\(P\ge\sqrt{5}.\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{3}=\frac{\sqrt{5}}{3}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{9}\)