Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq \left(\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\right)^2\)
\(\Rightarrow \frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=ab+bc+ac\)
Do đó:
\(P\geq ab+bc+ac+\frac{9}{2(a+b+c)}\)
Áp dụng BĐT AM-GM:
\(ab+bc+ac+\frac{9}{2(a+b+c)}=\frac{ab+bc+ac}{2}+\frac{ab+bc+ac}{2}+\frac{9}{2(a+b+c)}\geq 3\sqrt[3]{\frac{9(ab+bc+ac)^2}{8(a+b+c)}}\)
Theo một kết quả quen thuộc của BĐT AM-GM:
\((ab+bc+ac)^2\geq 3abc(a+b+c)\)
Thay \(abc=1\Rightarrow (ab+bc+ac)^2\geq 3(a+b+c)\)
Do đó: \(P\geq ab+bc+ac+\frac{9}{2(a+b+c)}\geq 3\sqrt[3]{\frac{27}{8}}=\frac{9}{2}\)
Vậy \(P_{\min}=\frac{9}{2}\Leftrightarrow a=b=c=1\)
ap dung bdt cosi ta co : \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\ge3\sqrt[3]{\dfrac{abc}{\left(abc\right)^2}}=3\) (1)
ta lai co \(a+b+c\ge3\sqrt[3]{abc}=3\)
\(\Rightarrow\dfrac{9}{2\left(a+b+c\right)}=\dfrac{9\left(a+b+c\right)}{2\left(a+b+c\right)^2}\ge\dfrac{9.3}{2.3^2}=\dfrac{3}{2}\) (2)
tu (1) vs (2) \(\Rightarrow\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{9}{2\left(a+b+c\right)}\ge3+\dfrac{3}{2}=\dfrac{9}{2}\)
dau "=" xay ra khi \(a=b=c=1\)
xl ! may mk bi hu nen khong viet dau dc bn thong cam

\(R=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{1}=9\) ( Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)
Vậy GTNN của \(R\) là \(9\) khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt ~

\(A=\dfrac{a}{b+1}+\dfrac{b}{a+1}+\dfrac{1}{a+b}\)
\(\ge\dfrac{a}{a+2b}+\dfrac{b}{2a+b}+\dfrac{1}{a+b}\)
\(=\dfrac{a^2}{a^2+2ab}+\dfrac{b^2}{2ab+b^2}+\dfrac{1}{a+b}\)
\(\ge\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2+2ab}+\dfrac{1}{a+b}\)
\(\ge\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2+\dfrac{\left(a+b\right)^2}{2}}+\dfrac{1}{a+b}\)
\(=\dfrac{\left(a+b\right)^2}{\dfrac{3}{2}\left(a+b\right)^2}+\dfrac{1}{a+b}=\dfrac{2}{3}+\dfrac{1}{a+b}\ge\dfrac{2}{3}+1=\dfrac{5}{3}\)
\("="\Leftrightarrow a=b=\dfrac{1}{2}\)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2a+b+c}=\dfrac{a}{a+b+c+a}\le\dfrac{a}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{c+a}\right)\\\dfrac{b}{a+2b+c}=\dfrac{b}{a+b+b+c}\le\dfrac{b}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{c}{a+b+2c}=\dfrac{c}{a+c+b+c}\le\dfrac{c}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{a}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{b}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)+\dfrac{c}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)
\(\Rightarrow VT\le\dfrac{a}{4\left(a+b\right)}+\dfrac{a}{4\left(a+c\right)}+\dfrac{b}{4\left(a+b\right)}+\dfrac{b}{4\left(b+c\right)}+\dfrac{c}{4\left(a+c\right)}+\dfrac{c}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\left[\dfrac{a}{4\left(a+b\right)}+\dfrac{b}{4\left(a+b\right)}\right]+\left[\dfrac{b}{4\left(b+c\right)}+\dfrac{c}{4\left(b+c\right)}\right]+\left[\dfrac{c}{4\left(a+c\right)}+\dfrac{a}{4\left(a+c\right)}\right]\)
\(\Rightarrow VT\le\dfrac{a+b}{4\left(a+b\right)}+\dfrac{b+c}{4\left(b+c\right)}+\dfrac{c+a}{4\left(c+a\right)}\)
\(\Rightarrow VT\le\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{a}{2a+b+c}+\dfrac{b}{a+2b+c}+\dfrac{c}{a+b+2c}\le\dfrac{3}{4}\) ( đpcm )
Dấu "=" xảy ra khi \(a=b=c\)

Lời giải:
Đặt \(P=\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}\)
\(P+3=\frac{a+b+c+1}{b+c+1}+\frac{b+a+c+1}{a+c+1}+\frac{c+b+a+1}{b+a+1}\)
\(=(a+b+c+1)\left(\frac{1}{b+c+1}+\frac{1}{a+c+1}+\frac{1}{b+a+1}\right)\)
Áp dụng BĐT Cauchy-Schwarz:
\(P+3\geq (a+b+c+1).\frac{9}{b+c+1+a+c+1+b+a+1}=\frac{9(a+b+c+1)}{2(a+b+c+1)+1}\)
Đặt \(a+b+c+1=t\). Vì \(a,b,c\geq \frac{1}{2}\Rightarrow t\geq \frac{5}{2}\)
Khi đó:
\(\frac{9(a+b+c+1)}{2(a+b+c+1)+1}=\frac{9t}{2t+1}=\frac{9}{2}-\frac{9}{2(2t+1)}\geq \frac{9}{2}-\frac{9}{2.(2.\frac{5}{2}+1)}=\frac{15}{4}\)
\(\Rightarrow P+3\geq \frac{9(a+b+c+1)}{2(a+b+c+1)+1}\geq \frac{15}{4}\)
\(\Rightarrow P\ge \frac{3}{4}\)
Vậy \(P_{\min}=\frac{3}{4}\Leftrightarrow a=b=c=\frac{1}{2}\)

Đang rảnh, làm luôn\(A=\dfrac{a}{bc}+\dfrac{b}{ca}+\dfrac{c}{ab}=\dfrac{1}{2}\left[\left(\dfrac{a}{bc}+\dfrac{b}{ca}\right)+\left(\dfrac{b}{ca}+\dfrac{c}{ab}\right)+\left(\dfrac{c}{ab}+\dfrac{a}{bc}\right)\right]\ge\dfrac{1}{2}\left(\dfrac{2}{c}+\dfrac{2}{a}+\dfrac{2}{b}\right)=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{3}{2}\)
Dấu "=" xảy ra <=> a = b = c = 2

Áp dụng bất đẳng thức Cô-si cho 3 số không âm ta có: \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow3\sqrt[3]{abc}\le a+b+c=1\Rightarrow\sqrt[3]{abc}\le\dfrac{1}{3}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}=\dfrac{3}{\sqrt[3]{abc}}\ge\dfrac{3}{\dfrac{1}{3}}=9\)
Dấu "=" xảy ra <=> a = b = c = \(\dfrac{1}{3}\)
Áp dụng bất đẳng thức Cosi ta có :
\(\frac{a}{b+c} + \frac{b+c}{4a} \geq 1;\frac{b}{c+a} + \frac{c+a}{4b} \geq 1;\frac{c}{a+b} + \frac{a+b}{4c} \geq 1\)
\(\frac{b}{a}+\frac{a}{b} \geq 2;\frac{c}{b}+\frac{b}{c} \geq 2;\frac{a}{c}+\frac{c}{a} \geq 2\)
\(\Rightarrow A=( \frac{a}{b+c} + \frac{b+c}{4a} +\frac{b}{c+a} + \frac{c+a}{4b} +\frac{c}{a+b} + \frac{a+b}{4c}) +\frac{3}{4}(\frac{b}{a}+\frac{a}{b}+\frac{c}{b}+\frac{b}{c} +\frac{a}{c}+\frac{c}{a} )\)
\(\geq 1+1+1+\frac{3}{4} (2+2+2)=\frac{15}{2}\)
Dấu = xảy ra khi và chỉ khi a=b=c>0