\(\frac{a^3}{a+bc}+\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2022

Từ bất đẳng thức Cô si ta có:

\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)

\(\Rightarrow\)Ta cần chứng minh:

\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.

21 tháng 2 2022

sai r bạn ơi ko biết còn đòi

31 tháng 8 2019

\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)

Tương tự cộng lại quy đồng ta có đpcm 

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

15 tháng 8 2020

sửa: chứng minh \(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\ge\frac{3}{2}\)

áp dụng bđt Cauchy ta có

\(\frac{1}{1+ab}=1-\frac{1}{1+ab}\ge1-\frac{ab}{2\sqrt{ab}}=1-\frac{\sqrt{ab}}{2}\)

tương tự ta có \(\hept{\begin{cases}\frac{1}{1+bc}\ge1-\frac{\sqrt{bc}}{2}\\\frac{1}{1+ca}\ge1-\frac{\sqrt{ca}}{2}\end{cases}}\)

cộng theo vế các bđt trên và áp dụng bđt Cauchy ta được

\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge3-\frac{1}{2}\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(\ge3-\frac{1}{2}\left(\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\right)=3-\frac{a+b+c}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)

dấu "=" xảy ra khi \(\hept{\begin{cases}1+ab=1+bc=1+ca\\a=b=c\\a+b+c=3\end{cases}\Leftrightarrow a=b=c=1}\)

25 tháng 11 2019

1)

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

9 tháng 2 2022

Để ý rằng \(a+b+c=1\) hay \(\left(a+b+c\right)^2=1\)nên ta cần biển đổi a,b,c xuất hiện các đại lượng \(\frac{\sqrt{a}}{\sqrt{c+2b}};\frac{\sqrt{b}}{\sqrt{a+2c}};\frac{\sqrt{c}}{\sqrt{b+2a}}\)nên ta biển đổi như sau:

\(a+b+c=\frac{\sqrt{a}}{\sqrt{c+2b}}\sqrt{a\left(c+2b\right)}+\frac{\sqrt{b}}{\sqrt{a+2c}}\sqrt{b\left(a+2c\right)}+\frac{\sqrt{c}}{\sqrt{b+2a}}\sqrt{c\left(b+2a\right)}\)

Khi đó ta được:

\(\left(a+b+c\right)^2=\left[\frac{\sqrt{a}}{\sqrt{c+2b}}\sqrt{a\left(c+2b\right)}+\frac{\sqrt{b}}{\sqrt{a+2c}}\sqrt{b\left(a+2c\right)}+\frac{\sqrt{c}}{\sqrt{b+2a}}\sqrt{c\left(b+2a\right)}\right]^2\)

Theo bất đẳng thức Bunhiacopxiki ta được:

\(\left[\frac{\sqrt{a}}{\sqrt{c+2b}}\sqrt{a\left(c+2b\right)}+\frac{\sqrt{b}}{\sqrt{a+2c}}\sqrt{b\left(a+2c\right)}+\frac{\sqrt{c}}{\sqrt{b+2a}}\sqrt{c\left(b+2a\right)}\right]\)

\(\le\left(\frac{a}{c+2b}+\frac{b}{a+2c}+\frac{c}{b+2a}\right)\left[a\left(c+2b\right)b\left(a+2c\right)c\left(b+2a\right)\right]\)

Như vậy lúc này ta được:

\(\frac{a}{c+2b}+\frac{b}{a+2c}+\frac{c}{b+2a}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)

Vậy bài toán đã được chứng minh.

8 tháng 4 2019

Cho bài toán phụ : Cho a ; b là các số thực dương

C/m : \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)

Do a ; b là các số thực dương \(\Rightarrow ab\ge1\)

Ta có : \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)

\(\Leftrightarrow\frac{1}{a^2+1}-\frac{1}{ab+1}+\frac{1}{b^2+1}-\frac{1}{ab+1}\ge0\)

\(\Leftrightarrow\frac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\frac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\frac{\left(ab-a^2\right)\left(b^2+1\right)+\left(ab-b^2\right)\left(a^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\frac{ab^3-a^2b^2+ab-a^2+a^3b-a^2b^2+ab-b^2}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\frac{ab\left(a^2+b^2\right)+2ab-2a^2b^2-a^2-b^2}{...}\ge0\)

\(\Leftrightarrow\frac{\left(a^2+b^2\right)\left(ab-1\right)-2ab\left(ab-1\right)}{...}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{...}\ge0\)

Dễ thấy mẫu luôn dương , tử \(\ge0\) => luôn đúng

=> BĐT được c/m

Áp dụng BĐT phụ ( từ bài toán phụ trên ) , ta có :

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{2}{ab+1}+\frac{1}{c^2+1}=\frac{2c^2+2+ab+1}{\left(ab+1\right)\left(c^2+1\right)}=\frac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\)

( * )

Có : \(\frac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}-\frac{3}{2}=\frac{4c^2+2ab+6-3abc^2-3c^2-3ab-3}{...}=\frac{c^2+3-ab-3abc^2}{...}=\frac{c^2+bc+ac-3abc^2}{...}=\frac{c\left(a+b+c-3abc\right)}{...}\)\(\left(ab+bc+ac=3\right)\) ( 1 )

Do a , b , c là các số thực dương , áp dụng BĐT Cô - si cho 3 số , ta có : \(\left(a+b+c\right)\left(ab+bc+ac\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{a^2b^2c^2}=9abc\)

\(\Rightarrow a+b+c\ge3abc\left(ab+bc+ac=3\right)\) ( 2 )

Từ ( 1 ) ; ( 2 ) \(\Rightarrow\frac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}-\frac{3}{2}\ge0\)

\(\Rightarrow\frac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\ge\frac{3}{2}\) ( *' )

Từ (*) và (*') => ĐPCM

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

22 tháng 2 2020

https://olm.vn/hoi-dap/detail/82505750499.html

22 tháng 2 2020

Ở mục câu hỏi tương tự có bài đó bạn ơi

NV
16 tháng 11 2019

\(\left(a+\frac{4b}{c^2}\right)\left(b+\frac{4c}{a^2}\right)\left(c+\frac{4a}{b^2}\right)\ge2\sqrt{\frac{4ab}{c^2}}.2\sqrt{\frac{4bc}{a^2}}.2\sqrt{\frac{4ac}{b^2}}=64\)

Dấu "=" xảy ra khi \(a=b=c=2\)

\(\frac{a^3}{b}+ab\ge2a^2\) ; \(\frac{b^3}{c}+bc\ge2b^2\); \(\frac{c^3}{a}+ac\ge2c^2\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)

Dấu "=" xảy ra khi \(a=b=c\)

AH
Akai Haruma
Giáo viên
1 tháng 1 2017

Lời giải:

Áp dụng bất đẳng thức AM_GM kết hợp với $abc=1$:

\(\frac{a}{b}+\frac{a}{c}+1\geq 3\sqrt[3]{\frac{a^2}{bc}}=3a\). Tương tự với các phân thức khác

\(\Rightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}+3\geq 3(a+b+c)\)

Tiếp tục áp dụng AM_GM:

\(\frac{b}{a}+b^2c^2a+c\geq 3\sqrt[3]{b^3c^3}=3bc......\), công theo vế và rút gọn

\(\Rightarrow \frac{b}{a}+\frac{c}{b}+\frac{a}{c}+a+b+c\geq 2(ab+bc+ac)=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Cộng hai BĐT thu được lại, ta có:

\(\Rightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\geq 2\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có đpcm. Dấu $=$ xảy ra khi $a=b=c=1$