Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\sqrt{ab}\le a+b\le c\Rightarrow c^2\ge4ab\Rightarrow\frac{c^2}{ab}\ge4\)
\(P=1+\left(\frac{a}{b}\right)^2+\left(\frac{a}{c}\right)^2+\left(\frac{b}{a}\right)^2+1+\left(\frac{b}{c}\right)^2+\left(\frac{c}{a}\right)^2+\left(\frac{c}{b}\right)^2+1\)
\(P=3+\left(\frac{a}{b}\right)^2+\left(\frac{b}{a}\right)^2+\left(\frac{a}{c}\right)^2+\left(\frac{b}{c}\right)^2+\left(\frac{c}{a}\right)^2+\left(\frac{c}{b}\right)^2\)
\(P\ge3+2\sqrt{\frac{\left(ab\right)^2}{\left(ab\right)^2}}+2\sqrt{\frac{\left(ab\right)^2}{c^4}}+2\sqrt{\frac{c^4}{\left(ab\right)^2}}\)
\(P\ge5+2\left(\frac{ab}{c^2}+\frac{c^2}{ab}\right)=5+2\left(\frac{ab}{c^2}+\frac{c^2}{16ab}+\frac{15c^2}{ab}\right)\)
\(P\ge5+2\left(2\sqrt{\frac{abc^2}{16abc^2}}+\frac{15}{16}.4\right)=\frac{27}{2}\)
\(\Rightarrow P_{min}=\frac{27}{2}\) khi \(2a=2b=c\)
Đặt \(\hept{\begin{cases}a+b+c=p\\ab+bc+ca=q\\abc=r\end{cases}}\)
Thì ta có:
\(\hept{\begin{cases}p^2-2q=3\\A=2p+\frac{q}{r}\end{cases}}\)
Ta có: \(3pr\le q^2\) (cái này dễ thấy nên mình không chứng minh nha)
\(\Leftrightarrow\frac{q}{r}\ge\frac{3p}{q}=\frac{6p}{2q}=\frac{6p}{p^2-3}\)
Thế vô A ta được
\(A=2p+\frac{q}{r}\ge2p+\frac{6p}{p^2-3}\)
Ta chứng minh \(2p+\frac{6p}{p^2-3}\ge9\)
\(\Leftrightarrow2p^3-9p^2+27\ge0\)
\(\Leftrightarrow\left(p-3\right)^2\left(2p+3\right)\ge0\) (đúng)
Vậy GTNN là A = 9
bài này vừa read buổi tối này nek, xài UCT ,tiện thể cho hỏi lun do máy t lỗi hay do hệ thống z , k load bài nào luôn
Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)
Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))
Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)
Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị
Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)
Khi đó \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)
Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)
Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)
Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)
Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)
Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))
Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1
Ta có: \(0< a^2+b^2+c^2=3\Rightarrow a^2,b^2,c^2< 3\Rightarrow a,b,c< \sqrt{3}< 2\)
Xét bất đẳng thức phụ: \(2a+\frac{1}{a}\ge\frac{1}{2}a^2+\frac{5}{2}\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{\left(a-1\right)^2\left(2-a\right)}{2a}\ge0\)*đúng*
Áp dụng, ta được: \(P\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{5}{2}.3=9\)
Đẳng thức xảy ra khi a = b = c = 1
Áp dụng BĐT Cauchy - Schwarz và Cauchy ta có:
\(P=\frac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(\ge\frac{b^2+c^2}{a^2}+a^2\cdot\frac{9}{b^2+c^2}\) (Cauchy - Schwarz)
\(=\left(\frac{b^2+c^2}{a^2}+\frac{a^2}{b^2+c^2}\right)+8\cdot\frac{a^2}{b^2+c^2}\)
\(\ge2\sqrt{\frac{b^2+c^2}{a^2}\cdot\frac{a^2}{b^2+c^2}}+8\cdot\frac{b^2+c^2}{b^2+c^2}\) (BĐT Cauchy)
\(=2+8=10\)
Dấu "=" xảy ra khi: \(a=b\sqrt{2}=c\sqrt{2}\)
Vậy Min(P) = 10 khi \(a=b\sqrt{2}=c\sqrt{2}\)
Câu hỏi của Phạm Trần Minh Trí - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo.
Dùng Buniacoxki
=> MinP=9 khi a=b=c