Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình sẽ giải theo pp tập thể dục nha :
Theo bài ra , ta có :
\(a^2+b^2+c^2=3\)
\(\Leftrightarrow a^2+b^2+c^2-3=0\)
\(\Leftrightarrow a^2-1+b^2-1+c^2-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+1\right)+\left(b-1\right)\left(b+1\right)+\left(c-1\right)\left(c+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-1\right)\left(a+1\right)=0\\\left(b-1\right)\left(b+1\right)=0\\\left(c-1\right)\left(c+1\right)=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}a=1\\a=-1\end{cases}}\\\orbr{\begin{cases}b=1\\b=-1\end{cases}}\\\orbr{\begin{cases}c=1\\c=-1\end{cases}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}a=1\\a=-1\end{cases}}\\\orbr{\begin{cases}b=1\\b=-1\end{cases}}\\\orbr{\begin{cases}c=1\\\end{cases}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=1;a=-1\\b=1;b=-1\\c=1;c=-1\end{cases}}\)
mà a,b,c là ba số không âm
=) a = b = c =1
Thay a = b = c = 1 vào biểu thức ở đầu bài , ta được
\(\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\)
\(=\frac{1}{1+2+3}+\frac{1}{1+2+3}+\frac{1}{1+2+3}\)
\(=\frac{1}{6}\times3=\frac{1}{2}\)
Cái phần bé hơn hình như là có cái j đó sai sai vì gt đầu bài là ba số ko âm mà nên làm sao mà bé hơn được
Ta có: \(a^2+2b+3=\left(a^2+1\right)+2\left(b+1\right)\ge2\left(a+b+1\right)\)
Tương tự ta có: \(b^2+2c+3\ge2\left(b+c+1\right)\); \(c^2+2a+3\ge2\left(c+a+1\right)\)
Từ đó suy ra\(\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\)\(\le\frac{a}{2\left(a+b+1\right)}+\frac{b}{2\left(b+c+1\right)}+\frac{c}{2\left(c+a+1\right)}\)
\(=\frac{1}{2}\left(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\right)\)
Đặt \(K=\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\), ta đi chứng minh \(K\le1\)
Thật vậy: \(3-K=\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\)
\(=\frac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}+\frac{\left(c+1\right)^2}{\left(c+1\right)\left(b+c+1\right)}+\frac{\left(a+1\right)^2}{\left(a+1\right)\left(c+a+1\right)}\)
\(\ge\frac{\left(a+b+c+3\right)^2}{\left(b+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)}\)(*)
Ta có: \(\left(b+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)\)\(=3\left(a+b+c\right)+ab+bc+ca+a^2+b^2+c^2+3\)
(Mình gõ bằng chương trình Universal Math Solver, không hiện ảnh thì vô thống kê hỏi đáp của mình, ngày 30/5/2020 vào lúc 8:25)
\(=\frac{1}{2}\left[\left(a+b+c\right)^2+6\left(a+b+c\right)+9\right]=\frac{1}{2}\left(a+b+c+3\right)^2\)(**)
Từ (*) và (**) suy ra \(3-K\ge\frac{\left(a+b+c+3\right)^2}{\frac{1}{2}\left(a+b+c+3\right)^2}=2\Rightarrow K\le1\)
Vậy ta có điều phải chứng minh
Đẳng thức xảy ra khi a = b = c = 1
Áp dụng BĐT Cô-si,ta có :
\(a^2+1\ge2a\)
\(\Rightarrow\frac{a}{a^2+2b+3}\le\frac{a}{2a+2b+2}=\frac{1}{2}\left(\frac{a}{a+b+1}\right)\)
Tương tự : \(\frac{b}{b^2+2c+3}\le\frac{1}{2}\left(\frac{b}{b+c+1}\right);\frac{c}{c^2+2a+3}\le\frac{1}{2}\left(\frac{c}{c+a+1}\right)\)
\(\Rightarrow\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{1}{2}\left(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\right)\)
Áp dụng BĐT Bu-nhi-a-cốp-ski,ta có :
\(\frac{a}{a+b+1}=\frac{a\left(a+b+c^2\right)}{\left(a+b+1\right)\left(a+b+c^2\right)}\le\frac{a^2+ab+ac^2}{\left(a^2+b^2+c^2\right)^2}=\frac{a^2+ab+ac^2}{9}\)
TT : ...
Cộng lại ta được :
\(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\le\frac{a^2+ab+ac^2}{9}+\frac{b^2+bc+ba^2}{9}+\frac{c^2+ca+cb^2}{9}\)
\(=\frac{a^2+b^2+c^2+ab+bc+ac+ac^2+ba^2+cb^2}{9}\le\frac{3+3+3}{9}=1\)
\(\Rightarrow\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{1}{2}\)
Dấu "=" xảy ra khi a = b = c = 1
Ta có \(a^2b^2+b^2c^2+c^2a^2\geq a^2b^2c^2\Leftrightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq 1\)
BĐT cần chứng minh tương đương với \(\frac{\frac{1}{c^3}}{\frac{1}{a^2}+\frac{1}{b^2}}+\frac{\frac{1}{b^3}}{\frac{1}{a^2}+\frac{1}{c^2}}+\frac{\frac{1}{a^3}}{\frac{1}{b^2}+\frac{1}{c^2}}\geq \frac{\sqrt{3}}{2}\)
Đặt \((\frac{1}{a},\frac{1}{b},\frac{1}{c})=(x,y,z)\). Bài toán trở thành:
Cho \(x,y,z>0|x^2+y^2+z^2\geq 1\). CMR \(P=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\geq \frac{\sqrt{3}}{2}\)
Lời giải:
Áp dụng BĐT Cauchy -Schwarz:
\(P=\frac{x^4}{xy^2+xz^2}+\frac{y^4}{yz^2+yx^2}+\frac{z^4}{zx^2+zy^2}\geq \frac{(x^2+y^2+^2)^2}{x^2(y+z)+y^2(x+z)+z^2(x+y)}\) (1)
Không mất tính tổng quát, giả sử \(x\geq y\geq z\Rightarrow x^2\geq y^2\geq z^2\)
Và \(y+z\leq z+x\leq x+y\). Khi đó, áp dụng BĐT Chebyshev:
\(3[x^2(y+z)+y^2(x+z)+z^2(x+y)]\leq (x^2+y^2+z^2)(y+z+x+z+x+y)\)
\(\Leftrightarrow x^2(y+z)+y^2(x+z)+z^2(x+y)\leq \frac{2(x^2+y^2+z^2)(x+y+z)}{3}\)
Theo hệ quả của BĐT Am-Gm thì: \((x+y+z)^2\leq 3(x^2+y^2+z^2)\Rightarrow x+y+z\leq \sqrt{3(x^2+y^2+z^2)}\)
\(\Rightarrow x^2(y+z)+y^2(x+z)+z^2(x+y)\leq \frac{2(x^2+y^2+z^2)\sqrt{3(x^2+y^2+z^2)}}{3}\) (2)
Từ (1),(2) suy ra \(P\geq \frac{3(x^2+y^2+z^2)^2}{2(x^2+y^2+z^2)\sqrt{3(x^2+y^2+z^2)}}=\frac{\sqrt{3(x^2+y^2+z^2)}}{2}\geq \frac{\sqrt{3}}{2}\)
Ta có đpcm
Dáu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Leftrightarrow a=b=c=\sqrt{3}\)
Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)
Khi đó giả thiết được viết lại là \(x^2+y^2+z^2\ge1\)và ta cần chứng minh \(\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\ge\frac{\sqrt{3}}{2}\)(*)
Áp dụng BĐT Bunhiacopxki dạng phân thức, ta được:
\(VT_{\left(^∗\right)}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(z^2+x^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\)\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)}\)
Đến đây ta đi chứng minh \(\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)}\ge\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)^2\)\(\ge\sqrt{3}\left[x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)\right]\)
Ta có: \(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\)\(\le\frac{1}{\sqrt{2}}\sqrt{\left(\frac{2x^2+y^2+z^2+y^2+z^2}{3}\right)^3}\)
\(=\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)
Tương tự ta có: \(y\left(z^2+x^2\right)\le\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)
\(z\left(x^2+y^2\right)\le\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)
Cộng theo vế của 3 BĐT trên, ta được:
\(\text{∑}_{cyc}\left[x\left(y^2+z^2\right)\right]\le\frac{2\sqrt{3}}{3}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)
\(\Leftrightarrow\sqrt{3}\text{∑}_{cyc}\left[x\left(y^2+z^2\right)\right]\le2\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)
Cuối cùng ta cần chứng minh được
\(2\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\le2\left(x^2+y^2+z^2\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2\ge1\)(đúng)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Rightarrow a=b=c=\sqrt{3}\)
a/ BĐT sai, cho \(a=b=c=2\) là thấy
b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)
\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương
\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)
\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)
Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)
\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)
Ta có \(\frac{a}{a^2+2b+3}=\frac{a}{a^2+1+2\left(b+1\right)}\le\frac{a}{2a+2\left(b+1\right)}=\frac{a}{2\left(a+b+1\right)}\)
Chứng minh tương tự \(\hept{\begin{cases}\frac{b}{b^2+2c+3}\le\frac{b}{2\left(b+c+1\right)}\\\frac{c}{c^2+2a+3}\le\frac{c}{2\left(a+c+1\right)}\end{cases}}\)
Cộng 3 vế của 3 bđt lại ta được
\(VT\le\frac{1}{2}\left(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\right)\)
Để bài toán được chứng minh thì ta cần \(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\le1\)
\(\Leftrightarrow1-\frac{a}{a+b+1}+1-\frac{b}{b+c+1}+1-\frac{c}{c+a+1}\ge2\)
\(\Leftrightarrow A=\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\ge2\)
Ta có \(A=\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\)
\(=\frac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}+\frac{\left(c+1\right)^2}{\left(c+1\right)\left(b+c+1\right)}+\frac{\left(a+1\right)^2}{\left(a+1\right)\left(c+a+1\right)}\)
Áp dụng bđt quen thuộc \(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\)(quen thuộc) ta được
\(A\ge\frac{\left(a+b+c+3\right)^2}{\left(b+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)}\)
\(=\frac{\left(a+b+c+3\right)^2}{a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3}\)
\(=\frac{2\left(a+b+c+3\right)^2}{2\left(a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3\right)}\)
\(=\frac{2\left(a+b+c+3\right)^2}{a^2+b^2+c^2+\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)+6\left(a+b+c\right)+6}\)
\(=\frac{2\left(a+b+c+3\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)+6\left(a+b+c\right)+9}\)
\(=\frac{2\left(a+b+c+3\right)^2}{\left(a+b+c+3\right)^2}=2\)(DDpcm)
Dấu "=" xảy ra tại a= b = c =1
bn có thể ghi cho mk cái bđt đấy đc ko
#mã mã#