Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1. BĐT ban đầu
<=> \(\left(\frac{1}{3}-\frac{b}{a+3b}\right)+\left(\frac{1}{3}-\frac{c}{b+3c}\right)+\left(\frac{1}{3}-\frac{a}{c+3a}\right)\ge\frac{1}{4}\)
<=>\(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)
<=> \(\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ac}\ge\frac{3}{4}\)
Áp dụng BĐT buniacoxki dang phân thức
=> BĐT cần CM
<=> \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ac\right)}\ge\frac{3}{4}\)
<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng
=> BĐT được CM
2) \(a+b+c\le ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a+b+c-3\right)\ge0\)\(\Leftrightarrow\)\(a+b+c\ge3\)
ko mất tính tổng quát giả sử \(a\ge b\ge c\)
Có: \(3\le a+b+c\le ab+bc+ca\le3a^2\)\(\Leftrightarrow\)\(3a^2\ge3\)\(\Leftrightarrow\)\(a\ge1\)
=> \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le\frac{3}{1+2a}\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2 )\(\frac{1}{1+x}\ge\left(1-\frac{1}{1+y}\right)+\left(1-\frac{1}{1+z}\right)=\frac{y}{1+y}+\frac{z}{1+z}\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)
CMTT \(\frac{1}{1+y}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}};\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Nhân vế với vế 3 bđt được
\(\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
\(\Rightarrow P=xyz\le\frac{1}{8}\)
Dấu "=" xảy ra khi z=y=z = 1/2
1)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{8b}>\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\Leftrightarrow\frac{a-b}{2\sqrt{b}}>\sqrt{a}-\sqrt{b}\)
\(\Leftrightarrow a-2\sqrt{ab}+b>0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2>0\) (có a>b>0 theo gt) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=\frac{\frac{a^2+b^2+ab}{ab}.\frac{a^2-2ab+b^2}{a^2b^2}}{\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}}\)
\(=\frac{\frac{a^4-2a^3b+a^2b^2+a^2b^2-2ab^3+b^4+a^3b-2a^2b^2+ab^3}{a^3b^3}}{\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}}\)
\(=\frac{a^4+b^4-a^3b-ab^3}{a^3b^3}:\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}=\frac{1}{ab}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Ta có : \(\left(\sqrt{a}-\sqrt{b}\right)^2>0\Leftrightarrow a-2\sqrt{ab}+b>0\Leftrightarrow a+b>2\sqrt{ab}\Leftrightarrow\frac{1}{\sqrt{ab}}>\frac{2}{a+b}\)
2. Áp dụng từ câu 1) , ta có :
\(\frac{1}{\sqrt{1.2005}}+\frac{1}{\sqrt{2.2004}}+...+\frac{1}{\sqrt{2005.1}}>\frac{2}{1+2005}+\frac{2}{2+2004}+...+\frac{2}{2005+1}\)
\(\Leftrightarrow\frac{1}{\sqrt{1.2005}}+\frac{1}{\sqrt{2.2004}}+...+\frac{1}{\sqrt{2005.1}}< \frac{2.2005}{2006}=\frac{2005}{1003}\)
3. Ta có : \(\left(\frac{x^2+y^2}{x-y}\right)^2=\frac{x^4+2x^2y^2+y^4}{x^2-2xy+y^2}=\frac{x^4+y^4+2}{x^2+y^2-2}\)
Đặt \(t=x^2+y^2,t\ge0\Rightarrow\frac{x^4+y^4+2}{x^2+y^2-2}=\frac{t^2-2+2}{t-2}=\frac{t^2}{t-2}\)
Xét : \(\frac{t-2}{t^2}=\frac{1}{t}-\frac{2}{t^2}=-2\left(\frac{1}{t^2}-\frac{2}{t.4}+\frac{1}{16}\right)+\frac{1}{8}=-2\left(\frac{1}{t}-\frac{1}{4}\right)^2+\frac{1}{8}\le\frac{1}{8}\)
\(\Rightarrow\frac{t^2}{t-2}\ge8\Rightarrow\left(\frac{x^2+y^2}{x-y}\right)^2\ge8\Leftrightarrow\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{4}{2+a+b}\)( BĐT cô-si dạng engel)
\(\frac{4}{2+a+b}\le\frac{4}{2+2\sqrt{ab}}=\frac{2}{1+\sqrt{ab}}=VP\)(bđt tương đương)
vậy cả hai bđt dấu "=" xảy ra đồng thời
\(\hept{\begin{cases}\frac{1}{1+a}=\frac{1}{1+b}\\a=b=1\end{cases}}\)
vậy \(\frac{1}{1+a}+\frac{1}{1+b}=\frac{2}{1+\sqrt{ab}}\)khi \(a=b=1\)
\(b,\)\(\frac{1}{1+a}+\frac{1}{1+b}>\frac{2}{1+\sqrt{ab}}\)khi và chỉ khi bđt cô -si không xảy ra dấu bằng
và bđt tương đương xảy ra dấu bằng
\(\hept{\begin{cases}\frac{1}{1+a}+\frac{1}{1+b}>\frac{4}{2+a+b}\\\frac{4}{2+a+b}=\frac{2}{1+\sqrt{ab}}\end{cases}}\)
\(\hept{\begin{cases}\frac{2+a+b}{1+a+b+ab}>\frac{4}{2+a+b}\\4+4\sqrt{ab}=4+2a+2b\end{cases}}\)
\(\hept{\begin{cases}4+a^2+b^2+4a+4b+2ab>4+4a+4a+4ab\\2\sqrt{ab}=a+b\end{cases}}\)
\(\hept{\begin{cases}a^2+b^2>2ab\\a^2+b^2=0\end{cases}}\)
\(0>2ab\)
\(ab< 0\)
rồi chia ra từng TH
ra đc \(TH1:\hept{\begin{cases}a< 0\\b>0\end{cases}}\)
\(TH2:\hept{\begin{cases}a>0\\b< 0\end{cases}}\)
\(c,\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)khi và chỉ khi
bđt cô- si dạng engel lớn hơn hoặc bằng còn bđt tương đương thì dấu bằng xảy ra
\(\hept{\begin{cases}\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{4}{2+a+b}\\\frac{4}{2+a+b}=\frac{2}{1+\sqrt{ab}}\end{cases}}\)
\(\hept{\begin{cases}a^2+b^2\ge2ab\\a^2+b^2=0\end{cases}}\)
\(< =>0\ge2ab\)
vì đề bài cho \(a,b>0\)lên dấu bằng không xảy ra
vậy không có giá trị a,b nào thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)
câu d lập luận như các câu trên cậu làm nốt nha
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Ta có: \(A=\sqrt{\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{2006^2}\right)}=\sqrt{\frac{1}{2}.\frac{3}{2}.\frac{2}{3}.\frac{4}{3}...\frac{2015}{2016}.\frac{2017}{2016}}\)
\(=\sqrt{\frac{1}{2}.\frac{2017}{2016}}=\sqrt{\frac{2017}{4032}}\)
b. Với b > 0 thì a > 0, ta có: \(B=\frac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{b}-\frac{\sqrt{a}}{\sqrt{b}}=\frac{-\sqrt{b}}{\sqrt{b}}=-1\)
Với b < 0 thì a < 0, ta có: \(B=\frac{\sqrt{ab}-\sqrt{b^2}}{b}-\frac{\sqrt{ab}}{\sqrt{b^2}}=\frac{\sqrt{ab}-\sqrt{b^2}}{b}+\frac{\sqrt{ab}}{b}=\frac{2\sqrt{ab}+b}{b}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\frac{1}{a^2+2}+\frac{1}{b^2+2}+\frac{1}{c^2+2}\le1\)
\(\Leftrightarrow\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\le2\)
\(\Leftrightarrow1-\frac{2}{a^2+2}+1-\frac{2}{b^2+2}+1-\frac{2}{c^2+2}\ge1\)
\(\Leftrightarrow\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge1\)
Ta cần cm bđt trên đúng.Thật vậy
\(\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}=\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=1\)
\("="\Leftrightarrow a=b=c=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\left(\frac{a}{b}+\frac{b}{a}\right)^2-\left(\frac{a}{b}+\frac{b}{a}\right)-2}=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{a}{b}+\frac{b}{a}-2\right)}\)
\(=\frac{\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\frac{a}{b}+\frac{b}{a}-2}=\frac{\left(\frac{a-b}{ab}\right)^2}{\frac{a^2+b^2-2ab}{ab}}=\frac{\left(a-b\right)^2}{a^2b^2.\frac{\left(a-b\right)^2}{ab}}=\frac{1}{ab}\)
\(1=\sqrt{ab}+4a+b\ge\sqrt{ab}+2\sqrt{4ab}=5\sqrt{ab}\)
\(\Rightarrow\sqrt{ab}\le\frac{1}{5}\Rightarrow ab\le\frac{1}{25}\Rightarrow\frac{1}{ab}\ge25\)
\(\Rightarrow P_{min}=25\) khi \(\left\{{}\begin{matrix}a=\frac{1}{10}\\b=\frac{2}{5}\end{matrix}\right.\)
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\frac{\left(1+b^2\right)\left(1+ab\right)+\left(1+a^2\right)\left(1+ab\right)-2\left(1+a^2\right)\left(1+b^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow ab^3+b^2+ab+1+a^3b+a^2+ab+1-2a^2b^2-2a^2-2b^2-2\ge0\)
\(\Leftrightarrow a^3b+ab^3-2a^2b^2-a^2-b^2+2ab\ge0\)
\(\Leftrightarrow ab\left(a-b\right)^2-\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)đúng do \(ab\ge1,\left(a-b\right)^2\ge0\).
Do biến đổi tương đương, bất đẳng thức cuối đúng nên bất đẳng thức cần chứng minh cũng đúng.
Ta có đpcm.