Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có cả mấy bất đẳng thức đó hả
bn viết công thức tổng quát ra cho mk vs
mk thanks
Lời giải:
Do \(a\geq 1; b\geq 2; c\geq 3\Rightarrow a-1, b-2, c-3\geq 0\)
Áp dụng BĐT AM-GM cho các số không âm ta có:
\(\left\{\begin{matrix} (a-1)+4\geq 2\sqrt{4(a-1)}=4\sqrt{a-1}\\ (b-2)+9\geq 2\sqrt{9(b-2)}=6\sqrt{b-2}\\ (c-3)+16\geq 2\sqrt{16(c-3)}=8\sqrt{c-3}\end{matrix}\right.\)
Cộng theo vế và rút gọn thu được:
\(a+b+c+23\geq 4\sqrt{a-1}+6\sqrt{b-2}+8\sqrt{c-3}\) (đpcm)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} a-1=4\\ b-2=9\\ c-3=16\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=5\\ b=11\\ c=19\end{matrix}\right.\)
Nếu sửa đề lại thì giải theo cách này nhé :v
\(a\sqrt{a+8}+b\sqrt{b+8}+c\sqrt{c+8}+6\ge15\)
\(\Leftrightarrow a\sqrt{a+8}+b\sqrt{b+8}+c\sqrt{c+8}\ge9\)
Theo BĐT Bu - nhi - a - cốp xki ta có :
\(\left(a\sqrt{a+8}+b\sqrt{b+8}+c\sqrt{c+8}\right)^2\le\left(a^2+b^2+c^2\right)\left(a+b+c+24\right)=27\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a\sqrt{a+8}+b\sqrt{b+8}+c\sqrt{c+8}\le\sqrt{27\left(a^2+b^2+c^2\right)}\)
Do đó ta chỉ cần chứng minh :
\(\sqrt{27\left(a^2+b^2+c^2\right)}\ge9\)
\(\Leftrightarrow\sqrt{a^2+b^2+c^2}\ge\sqrt{3}\)
\(\Leftrightarrow a^2+b^2+c^2\ge3\)
Theo BĐT Cô - Si dưới dạng en-gel ta có :
\(\dfrac{a^2}{1}+\dfrac{b^2}{1}+\dfrac{c^2}{1}\ge\dfrac{\left(a+b+c\right)^2}{1+1+1}=\dfrac{3^2}{3}=3\)
Vậy BĐT đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=c=1\)
Nè bạn :)
Ta có : \(2ab+2ac\ge4a\sqrt{bc}\) (Cauchy_)
\(\Rightarrow a^2+2ab+2ac+4bc\ge a^2+4a\sqrt{bc}+4bc\)
\(\Rightarrow a^2+2ab+2ac+4bc\ge\left(a+2\sqrt{bc}\right)^2\)
\(\Rightarrow\sqrt{\left(a+2b\right)\left(a+2c\right)}\ge a+2\sqrt{bc}\)\(\left(1\right)\)
Tương tự : \(\sqrt{\left(b+2a\right)\left(b+2c\right)}\ge b+2\sqrt{ac}\)\(\left(2\right)\)
\(\sqrt{\left(c+2a\right)\left(c+2b\right)}\ge c+2\sqrt{ab}\)\(\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\)\(\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\)
\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{3}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Thay vào biểu thức M ta được M = \(\frac{\sqrt{3}}{3}\)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)
\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)
Từ ( 1 ) và ( 2 ) có đpcm
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
9=3(a+b+c) sau đó dùng kỹ thuật tách ghép đối xứng
\(a\sqrt{a+8}+b\sqrt{b+8}+c\sqrt{c+8}\ge9.\)
\("\sqrt{a+8}"\sqrt{b+8}"\sqrt{c+8}"=xyz\Leftrightarrow\left(a,b,c\right)=\left(X^2-8\right)\left(b^2-8\right)\left(c^2-8\right)\) (1)
\(\Leftrightarrow x^2+y^2+z^2=27\) (2)
\(\left(x^2-8\right)x+y\left(y^2-8\right)+z\left(z^2-8\right)\ge9\)
\(x^3+y^3+z^3-8\left(x+y+z\right)\ge9\)
\(\left(x^3+9x\right)+\left(y^3+9y\right)+\left(z^3+9y\right)-17\left(x+y+z\right)\ge6x^2+6y^2+6z^2-17\sqrt{3\left(x^2+y^2+z^2\right)}\)
từ (2) ta có (x^2+y^2+z^2)=27
\(VT\ge6\left(27\right)-17\sqrt{3\left(27\right)}=162-153=9\)
\(\ge\)