\(a\sqrt{a+8}+b\sqrt{b+8}+c\sqrt{c+8}\ge9\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

9=3(a+b+c) sau đó dùng kỹ thuật tách ghép đối xứng

\(a\sqrt{a+8}+b\sqrt{b+8}+c\sqrt{c+8}\ge9.\)

\("\sqrt{a+8}"\sqrt{b+8}"\sqrt{c+8}"=xyz\Leftrightarrow\left(a,b,c\right)=\left(X^2-8\right)\left(b^2-8\right)\left(c^2-8\right)\) (1)

\(\Leftrightarrow x^2+y^2+z^2=27\) (2)

\(\left(x^2-8\right)x+y\left(y^2-8\right)+z\left(z^2-8\right)\ge9\)

\(x^3+y^3+z^3-8\left(x+y+z\right)\ge9\)

\(\left(x^3+9x\right)+\left(y^3+9y\right)+\left(z^3+9y\right)-17\left(x+y+z\right)\ge6x^2+6y^2+6z^2-17\sqrt{3\left(x^2+y^2+z^2\right)}\)

từ (2) ta có (x^2+y^2+z^2)=27 

\(VT\ge6\left(27\right)-17\sqrt{3\left(27\right)}=162-153=9\)

                                                                                                                         \(\ge\)

14 tháng 12 2019

có cả mấy bất đẳng thức đó hả

bn viết công thức tổng quát ra cho mk vs

mk thanks

AH
Akai Haruma
Giáo viên
6 tháng 11 2017

Lời giải:

Do \(a\geq 1; b\geq 2; c\geq 3\Rightarrow a-1, b-2, c-3\geq 0\)

Áp dụng BĐT AM-GM cho các số không âm ta có:

\(\left\{\begin{matrix} (a-1)+4\geq 2\sqrt{4(a-1)}=4\sqrt{a-1}\\ (b-2)+9\geq 2\sqrt{9(b-2)}=6\sqrt{b-2}\\ (c-3)+16\geq 2\sqrt{16(c-3)}=8\sqrt{c-3}\end{matrix}\right.\)

Cộng theo vế và rút gọn thu được:

\(a+b+c+23\geq 4\sqrt{a-1}+6\sqrt{b-2}+8\sqrt{c-3}\) (đpcm)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} a-1=4\\ b-2=9\\ c-3=16\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=5\\ b=11\\ c=19\end{matrix}\right.\)

Nếu sửa đề lại thì giải theo cách này nhé :v

\(a\sqrt{a+8}+b\sqrt{b+8}+c\sqrt{c+8}+6\ge15\)

\(\Leftrightarrow a\sqrt{a+8}+b\sqrt{b+8}+c\sqrt{c+8}\ge9\)

Theo BĐT Bu - nhi - a - cốp xki ta có :

\(\left(a\sqrt{a+8}+b\sqrt{b+8}+c\sqrt{c+8}\right)^2\le\left(a^2+b^2+c^2\right)\left(a+b+c+24\right)=27\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a\sqrt{a+8}+b\sqrt{b+8}+c\sqrt{c+8}\le\sqrt{27\left(a^2+b^2+c^2\right)}\)

Do đó ta chỉ cần chứng minh :

\(\sqrt{27\left(a^2+b^2+c^2\right)}\ge9\)

\(\Leftrightarrow\sqrt{a^2+b^2+c^2}\ge\sqrt{3}\)

\(\Leftrightarrow a^2+b^2+c^2\ge3\)

Theo BĐT Cô - Si dưới dạng en-gel ta có :

\(\dfrac{a^2}{1}+\dfrac{b^2}{1}+\dfrac{c^2}{1}\ge\dfrac{\left(a+b+c\right)^2}{1+1+1}=\dfrac{3^2}{3}=3\)

Vậy BĐT đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=c=1\)

5 tháng 8 2018

Đúng là đề bài khó wá hihahihahiha hihi =)))

3 tháng 3 2020

Nè bạn :) 

Ta có : \(2ab+2ac\ge4a\sqrt{bc}\) (Cauchy_)

\(\Rightarrow a^2+2ab+2ac+4bc\ge a^2+4a\sqrt{bc}+4bc\)

\(\Rightarrow a^2+2ab+2ac+4bc\ge\left(a+2\sqrt{bc}\right)^2\)

\(\Rightarrow\sqrt{\left(a+2b\right)\left(a+2c\right)}\ge a+2\sqrt{bc}\)\(\left(1\right)\)

Tương tự : \(\sqrt{\left(b+2a\right)\left(b+2c\right)}\ge b+2\sqrt{ac}\)\(\left(2\right)\)

\(\sqrt{\left(c+2a\right)\left(c+2b\right)}\ge c+2\sqrt{ab}\)\(\left(3\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\)\(\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\)

\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{3}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Thay vào biểu thức M ta được M = \(\frac{\sqrt{3}}{3}\)

8 tháng 1 2020

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)