\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2017

Lười quá, bn tham khảo nhé:

Bấm vô đây

Câu hỏi của Nguyen Thi Hoai Linh - Toán lớp 7 - Học toán với OnlineMath

8 tháng 10 2018

Vì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

Suy ra \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{a+b+c}=2\)

\(\Rightarrow b+c=2a;a+c=2b;a+b=2c\)

Bằng cách rút \(b\) từ đẳng thức thứ nhất thay vào đẳng thức thứ hai ta đễ dàng suy ra được \(a=b=c\)

\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)

8 tháng 10 2018

Vì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

Suy ra \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{a+b+c}=2\)

\(\Rightarrow b+c=2a;a+c=2b;a+b=2c\)

Bằng cách rút \(b\) từ đẳng thức thứ nhất thay vào đẳng thức thứ hai ta đễ dàng suy ra được \(a=b=c\)

\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)

5 tháng 11 2016

Ta có :

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+b+a}=\frac{1}{2}\)

\(\Rightarrow\begin{cases}2a=b+c\\2b=c+a\\2c=b+a\end{cases}\)

Thay vào M ta có :

\(A=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)

=> M = 6 \(\forall a;b;c\)

Vậy giá trị của M không phụ thuộc vào giá trị của các biến a ; b ; c

5 tháng 11 2016

chứng minh mà

 

15 tháng 11 2016

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}=\frac{a+b+c}{2.\left(a+b+c\right)}\left(1\right)\)

Xét 2 trường hợp:

  • TH1: a + b + c = 0 \(\Rightarrow\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}\)

\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+\left(-1\right)+\left(-1\right)=-3\), không phụ thuộc vào giá trị của a; b; c (đpcm)

  • TH2: a + b + c \(\ne0\)

Từ (1) ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{1}{2}\) \(\Rightarrow\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}\)

\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\), không phụ thuộc vào giá trị của a; b; c (đpcm)

 

15 tháng 11 2016

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Suy ra \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=2\)

\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)

11 tháng 11 2017

Ta có : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}\)

Xét 2 trường hợp :

TH1 : Nếu a + b + c = 0 thì \(\hept{\begin{cases}b+c=-a\\a+b=-c\\a+c=-b\end{cases}}\).Ta có :\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=-1+-1+-1=-3\). Không phụ thuộc vào giá trị của a ; b ; c

TH2 : Nếu \(a+b+c\ne0\)thì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\)

Có : \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)                                                              -Không phụ thuộc vào các giá trị a ; b ; c (2)

Từ (1) và (2)

=> ĐPCM

11 tháng 1 2018

@Phạm Tuấn Đạt cho 3 số đôi 1 khác 0 =>a+b+c khác 0 => ko cần phải xét

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\)\(\hept{\begin{cases}b+c=2a\\a+c=2b\\a+b=2c\end{cases}}\)

\(\Rightarrow\)\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)

... 

Chúc bạn học tốt ~ 

2 tháng 11 2018

Cách easy nhất:

Đặt \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=k\Rightarrow a=k\left(b+c\right);b=k\left(a+c\right);c=k\left(a+b\right)\)

Thay vào,ta có:\(\frac{b+c}{a}=\frac{b+c}{k\left(b+c\right)}=\frac{1}{k}\) (1)

Tương tự với hai đẳng thức còn lại,được: \(\frac{a+c}{b}=\frac{1}{k}\) (2)

               và            \(\frac{a+b}{c}=\frac{1}{k}\) (3)

Từ (1),(2) và (3) ta có: \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\left(=\frac{1}{k}\right)^{\left(đpcm\right)}\)

4 tháng 11 2015

Ta có 

a/(b+c)=b/(a+c)=c/(a+b)

=>(b+c)/a=(a+c)/b=(a+b)/c=(b+c+a+c+a+b)/(a+b+c)=2(a+b+c)/(a+b+c)=2

=>(b+c)/(a+(a+b)/c+(a+b)/c=2+2+2=6

=>(b+c)/a+(a+b)/c+(a+b)/c không phụ thuộc vào giá trị của a,b,c (đpcm)

Vậy............

Nhớ thanks nha

5 tháng 1 2020

Câu 1:

a) Xét \(\Delta\)ADB và \(\Delta\)CDE có:

DA=DC(D: trđ AC) 

ADB=CDE (đối đỉnh) 

DB=DE (gt) 

\(\Rightarrow\)\(\Delta\)ADB=\(\Delta\)CDE (c.g.c) 

b) Vì \(\Delta\)ADB=\(\Delta\)CDE 

\(\Rightarrow\)BAD=DCE (2 góc tương ứng) 

Mà 2 góc ở vị trí so le trong 

\(\Rightarrow\)AB//CE

c) Ta có:

BA \(\perp\)BC

BA//CE

\(\Rightarrow\)BC \(\perp\)CE 

\(\Rightarrow\)BCE=90o

5 tháng 4 2017

\(\frac{b+c}{bc}=\frac{2}{a}\) <=> \(\frac{1}{b}+\frac{1}{c}=\frac{2}{a}\)

<=> \(\frac{1}{b}-\frac{1}{a}+\frac{1}{c}-\frac{1}{a}=0\) <=> \(\frac{a-b}{ab}+\frac{a-c}{ac}=0\)

<=> \(\frac{a-b}{ab}=\frac{c-a}{ac}\)

=> \(\frac{ab}{ac}=\frac{a-b}{c-a}\)<=> \(\frac{b}{c}=\frac{a-b}{c-a}\) => Đpcm

5 tháng 4 2017

Có \(\frac{b+c}{bc}=\frac{2}{a}\)

\(=>2bc=a\left(b+c\right)\)

\(=>bc+bc=ab+ac\)

\(=>bc-ab=ac-bc\)

\(=>b\left(c-a\right)=c\left(a-b\right)\)

\(=>\frac{b}{c}=\frac{a-b}{c-a}\)( đpcm)