Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng bđt Cauchy-Schwarz:
\(A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^3+x^2y+xy^2+y^3+y^2z+yz^2+z^3+z^2x+x^2z}\)
\(=\dfrac{\left(x^2+y^2+z^2\right)^2}{x\left(x^2+y^2+z^2\right)+y\left(x^2+y^2+z^2\right)+z\left(x^2+y^2+z^2\right)}=\dfrac{\left(x^2+y^2+z^2\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{x+y+z}\ge\dfrac{\dfrac{\left(x+y+z\right)^2}{3}}{x+y+z}=\dfrac{x+y+z}{3}=\dfrac{2012}{3}\)
\("="\Leftrightarrow x=y=z=\dfrac{2012}{3}\)
2)
Áp dụng bđt AM-GM:
\(\dfrac{x^3}{x^2+y^2}=x-\dfrac{xy^2}{x^2+y^2}\ge x-\dfrac{xy^2}{2xy}=x-\dfrac{y}{2}\)
Chứng minh tương tự và cộng theo vế:
\(S\ge x-\dfrac{y}{2}+y-\dfrac{z}{2}+z-\dfrac{x}{2}=\dfrac{2015}{2}\)
\("="\Leftrightarrow x=y=z=\dfrac{2015}{3}\)
bài 3:
a, đặt x12=y9=z5=kx12=y9=z5=k
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: x5=y7=z3=x225=y249=z29x5=y7=z3=x225=y249=z29
A/D tính chất dãy tỉ số bằng nhau ta có:
x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
\(\dfrac{x^2}{y+z}+\dfrac{1}{4}\left(y+z\right)\ge2.\sqrt{\dfrac{x^2}{y+z}.\dfrac{1}{4}\left(y+z\right)}=x\)
Tung tu : \(\dfrac{y^2}{x+z}+\dfrac{1}{4}\left(x+z\right)\ge y\)
\(\dfrac{z^2}{x+y}+\dfrac{1}{4}\left(x+y\right)\ge z\)
=> P+\(\dfrac{1}{4}\left(y+z\right)+\dfrac{1}{4}\left(x+z\right)+\dfrac{1}{4}\left(x+y\right)\ge x+y+z\)
=> P+\(\dfrac{1}{4}\left(2x+2y+2z\right)\ge4\)
=> P+2≥4
=> P≥2
Dau = khi: x=y=z=\(\dfrac{4}{3}\)
Vậy Min P=2 khi x=y=z=\(\dfrac{4}{3}\)
đề có vấn đề không vậy? P = 4 ?