\(x^2+y^3+z^4>1\).CMR \(x^5+y^6+z^7<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2017

ơ lạ ~ vì x;y;z đều là số dương nên x2<x5;y3<y6;z4<z7 cộng lại x2+y3+z4<x5+y6+zchứ, sao lại cho cái vế phải nhỏ hơn vế trái vậy???

15 tháng 2 2017

đề cho là số thực mà

16 tháng 12 2018

Ta có:  (đk: x,y,z,t > 0)

 \(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)

Vậy \(M>1^{\left(đpcm\right)}\)

1 tháng 8 2017

a) Áp dụng tính chất ..., ta có :

 \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{2+6-4}=\frac{8}{4}=2\)

\(\Rightarrow x=4;y=6;z=8\)

b)2x = 4y \(\Rightarrow\frac{x}{4}=\frac{y}{2}\)\(\Rightarrow\frac{x}{20}=\frac{y}{10}\)( 1 )

4y =5z \(\Rightarrow\frac{y}{5}=\frac{z}{4}\)\(\Rightarrow\frac{y}{10}=\frac{z}{8}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{8}\)

Áp dụng tính chất ..., ta có :

\(\frac{x}{20}=\frac{y}{10}=\frac{z}{8}=\frac{x-y+2z}{20-10+16}=\frac{40}{26}=\frac{20}{13}\)

\(\Rightarrow x=\frac{400}{13};y=\frac{200}{13};z=\frac{160}{13}\)

còn lại tương tự

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

24 tháng 9 2019

\(a,\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và 2x + 3y - z = 124

Ta có : \(\frac{x}{3}=\frac{y}{4}\)=> \(\frac{x}{15}=\frac{y}{20}\)

\(\frac{y}{5}=\frac{z}{7}\)=> \(\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)

Đến đây là tìm x,y,z rồi

b. Ta có : \(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z(1)\)

Áp dụng tính chất bằng nhau của tỉ lệ thức ta được :

\(\frac{x+y+z}{2\left[x+y+z\right]}=x+y+z(2)\)

Nếu x + y + z = 0 thì từ \((1)\)suy ra x = 0 , y = 0 , z = 0

Nếu x + y + z \(\ne\)0 thì từ \((2)\)ta suy ra : \(\frac{1}{2}=x+y+z\), khi đó \((1)\)trở thành :

\(\frac{x}{\frac{1}{2}-x+1}=\frac{y}{\frac{1}{2}-y+1}=\frac{z}{\frac{1}{2}-z-2}=\frac{1}{2}\)

Do đó : 2x = \(\frac{3}{2}-x\)=> \(x=\frac{1}{2}\); 2y = \(\frac{3}{2}-y\)=> \(y=\frac{1}{2}\); 2z = \(-\frac{3}{2}-z\)=> \(z=-\frac{1}{2}\)

Vậy có hai đáp số \((0,0,0)\)và \((\frac{1}{2};\frac{1}{2};-\frac{1}{2})\)

9 tháng 1 2020

I don,t know

1 tháng 9 2019

Đáp án đúng nhưng cách làm này là sai

1 tháng 9 2019

bày em cách làm với được không ạ? em tự suy ra chứ thầy cô chưa bày j cả nên là em cx chưa hiểu cho lắm mong anh giúp đỡ ạ