\(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}=2\). Tìm GTL...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2021

\(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}=2\)

=> \(\dfrac{1}{a+1}=1-\dfrac{1}{b+1}+1-\dfrac{1}{c+1}=\dfrac{b}{b+1}+\dfrac{c}{c+1}\ge2\sqrt{\dfrac{bc}{\left(b+1\right)\left(c+1\right)}}\)( AM-GM)

Tương tự ta có \(\dfrac{1}{b+1}\ge2\sqrt{\dfrac{ac}{\left(a+1\right)\left(c+1\right)}}\)\(\dfrac{1}{c+1}\ge2\sqrt{\dfrac{ab}{\left(a+1\right)\left(b+1\right)}}\)

Nhân vế với vế các bđt trên

=> \(\dfrac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge8\sqrt{\dfrac{a^2b^2c^2}{\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2}}=8\cdot\dfrac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

=> \(1\le8abc\)<=> \(abc\le\dfrac{1}{8}\)

Đẳng thức xảy ra <=> a=b=c=1/2

12 tháng 4 2021

ý quên thiếu KL

Vậy MaxP = 1/8 <=> a=b=c=1/2

5 tháng 12 2018

Câu 3. Dự đoán dấu "=" khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Dùng phương pháp chọn điểm rơi thôi :)

                             LG

Áp dụng bđt Cô-si được \(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\)

                                  \(\Rightarrow1\ge3\sqrt[3]{a^2b^2c^2}\)

                                  \(\Rightarrow\frac{1}{3}\ge\sqrt[3]{a^2b^2c^2}\)

                                 \(\Rightarrow\frac{1}{27}\ge a^2b^2c^2\)

                                 \(\Rightarrow\frac{1}{\sqrt{27}}\ge abc\)

Khi đó :\(B=a+b+c+\frac{1}{abc}\)

   \(=a+b+c+\frac{1}{9abc}+\frac{8}{9abc}\)

\(\ge4\sqrt[4]{abc.\frac{1}{9abc}}+\frac{8}{9.\frac{1}{\sqrt{27}}}\)

 \(=4\sqrt[4]{\frac{1}{9}}+\frac{8\sqrt{27}}{9}=\frac{4}{\sqrt[4]{9}}+\frac{8}{\sqrt{3}}=\frac{4}{\sqrt{3}}+\frac{8}{\sqrt{3}}=\frac{12}{\sqrt{3}}=4\sqrt{3}\)

Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

Vậy .........

4 tháng 12 2018

2, \(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)

\(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)

\(A=\left[\frac{a^2}{b+c}+\frac{\left(b+c\right)}{4}\right]+\left[\frac{b^2}{a+c}+\frac{\left(a+c\right)}{4}\right]+\left[\frac{c^2}{a+b}+\frac{\left(a+b\right)}{4}\right]-\frac{\left(a+b+c\right)}{2}\)

Áp dụng BĐT AM-GM ta có:

\(A\ge2.\sqrt{\frac{a^2}{4}}+2.\sqrt{\frac{b^2}{4}}+2.\sqrt{\frac{c^2}{4}}-\frac{\left(a+b+c\right)}{2}\)

\(A\ge a+b+c-\frac{6}{2}\)

\(A\ge6-3\)

\(A\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)\(\frac{a^2}{b+c}=\frac{b+c}{4}\Leftrightarrow4a^2=\left(b+c\right)^2\Leftrightarrow2a=b+c\)(1)

                                 \(\frac{b^2}{a+c}=\frac{a+c}{4}\Leftrightarrow4b^2=\left(a+c\right)^2\Leftrightarrow2b=a+c\)(2)

                                 \(\frac{c^2}{a+b}=\frac{a+b}{4}\Leftrightarrow4c^2=\left(a+b\right)^2\Leftrightarrow2c=a+b\)(3)

Lấy \(\left(1\right)-\left(3\right)\)ta có:

\(2a-2c=c+b-a-b=c-a\)

\(\Rightarrow2a-2c-c+a=0\)

\(\Leftrightarrow3.\left(a-c\right)=0\)

\(\Leftrightarrow a-c=0\Leftrightarrow a=c\)

Chứng minh tương tự ta có: \(\hept{\begin{cases}b=c\\a=b\end{cases}}\)

\(\Rightarrow a=b=c=2\)

Vậy \(A_{min}=3\Leftrightarrow a=b=c=2\)

Y
23 tháng 5 2019

+ \(2a+b+c=\left(a+b\right)+\left(a+c\right)\)

\(\ge2\sqrt{\left(a+b\right)\left(a+c\right)}\) ( theo AM-GM )

\(\Rightarrow\left(2a+b+c\right)^2\ge4\left(a+b\right)\left(a+c\right)\)

\(\Rightarrow\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)

Dấu "=" xảy ra \(\Leftrightarrow b=c\)

+ Tương tự : \(\frac{1}{\left(2b+c+a\right)^2}\le\frac{1}{4\left(a+b\right)\left(b+c\right)}\). Dấu "=" xảy ra <=> a = c

\(\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(b+c\right)}\). Dấu "=" xảy ra \(\Leftrightarrow a=b\)

Do đó : \(P\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(a+b\right)\left(b+c\right)}+\frac{1}{\left(a+c\right)\left(b+c\right)}\right)\)

\(\Rightarrow P\le\frac{1}{2}\cdot\frac{a+b+c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}\)\(=8abc\)

\(\Rightarrow P\le\frac{a+b+c}{16abc}\)

+ \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\). Dấu :=" xảy ra \(\Leftrightarrow a=b\)

\(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\). Dấu "=" xảy ra <=> b = c

\(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\). Dấu "=" xảy ra <=> c = a

\(\Rightarrow2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(\Rightarrow3\ge\frac{a+b+c}{abc}\) \(\Rightarrow a+b+c\le3abc\)

\(\Rightarrow P\le\frac{3abc}{16abc}=\frac{3}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

29 tháng 5 2017

Ta có:\(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{a+c+1}=2\)

\(\Rightarrow\dfrac{1}{a+b+1}=\left(1-\dfrac{1}{b+c+1}\right)+\left(1-\dfrac{1}{a+c+1}\right)\)

\(\Rightarrow\dfrac{1}{a+b+1}=\dfrac{b+c}{b+c+1}+\dfrac{a+c}{a+c+1}\ge2\sqrt{\dfrac{\left(b+c\right)\left(a+c\right)}{\left(b+c+1\right)\left(a+c+1\right)}}\)Chứng minh tương tự :\(\dfrac{1}{b+c+1}\ge2\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{\left(a+b+1\right)\left(a+c+1\right)}}\)

\(\dfrac{1}{a+c+1}\ge2\sqrt{\dfrac{\left(a+b\right)\left(b+c\right)}{\left(a+b+1\right)\left(b+c+1\right)}}\)

Nhân các bất đẳng thức trên lại với nhau về theo vế ,ta được:

\(\dfrac{1}{\left(a+b+1\right)\left(b+c+1\right)\left(a+c+1\right)}\ge\dfrac{8\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+1\right)\left(b+c+1\right)\left(a+c+1\right)}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{8}\)

Dấu "=" xảy ra khi:\(a=b=c=\dfrac{1}{4}\)

Vậy giá trị lớn nhất của (a+b)(b+c)(c+a) là \(\dfrac{1}{8}\) khi \(a=b=c=\dfrac{1}{4}\)

AH
Akai Haruma
Giáo viên
5 tháng 8 2018

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^3(b+c)}+\frac{a(b+c)}{4}\geq 2\sqrt{\frac{1}{a^3(b+c)}.\frac{a(b+c)}{4}}=2\sqrt{\frac{1}{4a^2}}=\frac{1}{a}=\frac{abc}{a}=bc\)

Tương tự:

\(\frac{1}{b^3(c+a)}+\frac{b(c+a)}{4}\geq \frac{1}{b}=ac\)

\(\frac{1}{c^3(a+b)}+\frac{c(a+b)}{4}\geq \frac{1}{c}=ab\)

Cộng theo vế:

\(\Rightarrow \text{VT}+\frac{ab+bc+ac}{2}\geq ab+bc+ac\)

\(\Rightarrow \text{VT}\geq \frac{ab+bc+ac}{2}\)

Tiếp tục áp dụng AM-GM: \(ab+bc+ac\geq 3\sqrt[3]{a^2b^2c^2}=3\)

\(\Rightarrow \text{VT}\ge \frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
5 tháng 8 2018

Lời giải:

Đặt vế trái là $A$

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\right)(a+b+b+c+c+c)\geq (1+1+1+1+1+1)^2\)

\(\Leftrightarrow \frac{1}{a}+\frac{2}{b}+\frac{3}{c}\geq \frac{36}{a+2b+3c}\)

Hoàn toàn TT:

\(\frac{1}{b}+\frac{2}{c}+\frac{3}{a}\geq \frac{36}{b+2c+3a}\)

\(\frac{1}{c}+\frac{2}{a}+\frac{3}{b}\geq \frac{36}{c+2a+3b}\)

Cộng theo vế:

\(\Rightarrow 6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 36A\)

\(\Rightarrow A\leq \frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Theo đkđb: \(ab+bc+ac=abc\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Do đó: \(A\leq \frac{1}{6}< \frac{3}{16}\) (đpcm)

5 tháng 12 2018

giải tạm 1 bài z -,-

2) Cauchy-Schwarz dạng Engel :

\(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}=\dfrac{6}{2}=3\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=2\)

Chúc bạn học tốt ~

8 tháng 9 2019

4/ Ta có: \(6=a+b+c+ab+bc+ca\ge3\left(\sqrt[3]{\left(abc\right)^2}+\sqrt[3]{abc}\right)\)

Đặt \(\sqrt[3]{abc}=t\Rightarrow t^2+t\le2\Rightarrow t\le1\Rightarrow t^3=C=abc\le1\)

Vậy...

5/ \(D\le\left(\frac{a+b+c}{3}\right)^3.\left[\frac{2\left(a+b+c\right)}{3}\right]^3=\frac{512}{729}\)

Vậy ...

P/s: Em không chắc

17 tháng 6 2019

12. Ta có \(ab\le\frac{a^2+b^2}{2}\)

=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)

Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)

=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)

=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)

Khi đó 

\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)

Dấu bằng xảy ra khi a=b=c=1

Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1

17 tháng 6 2019

13.  Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)

=> \(1\ge\frac{9}{a+b+c+3}\)

=> \(a+b+c\ge6\)

Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)

Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)

Cộng 3 BT trên ta có

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)

Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)

=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)

Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)

<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)

<=> \(a^2+b^2\ge2ab\)(luôn đúng )

=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)

=> \(P\ge2\)

Vậy \(MinP=2\)khi a=b=c=2

Lưu ý : Chỗ .... là tương tự 

5 tháng 6 2018

Em nghĩ đề là a chứ không phải 2a ;v

\(P=\dfrac{a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}\\ =\dfrac{a}{\sqrt{ab+bc+ac+a^2}}+\dfrac{b}{\sqrt{ab+bc+ac+b^2}}+\dfrac{c}{\sqrt{ab+bc+ac+c^2}}\\ =\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\\ \le\left(\dfrac{a}{2\left(a+b\right)}+\dfrac{a}{2\left(a+c\right)}\right)+\left(\dfrac{b}{2\left(a+b\right)}+\dfrac{b}{2\left(b+c\right)}\right)+\left(\dfrac{c}{2\left(a+c\right)}+\dfrac{c}{2\left(b+c\right)}\right)\)

\(=\dfrac{2\left(a+b+c\right)}{8\left(a+b+c\right)}=\dfrac{1}{4}\)

Áp dụng bđt : \(\dfrac{1}{xy}\le\dfrac{\dfrac{1}{x^2}+\dfrac{1}{y^2}}{2}\)

Dấu "=" xảy ra khi a=b=c=1/căn 3

17 tháng 12 2018

Dự đoán điểm rơi b=c=ka. Ta có:

\(P=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\dfrac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng BĐT AM-GM: \(\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{a}{a+b}+\dfrac{a}{a+c}\)

\(\dfrac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}=\dfrac{b.\sqrt{\dfrac{2k}{k+1}}}{\sqrt{\left(b+c\right).\dfrac{2k\left(a+b\right)}{k+1}}}\le\dfrac{b}{2}\sqrt{\dfrac{2k}{k+1}}.\left(\dfrac{1}{b+c}+\dfrac{\left(k+1\right)}{2k\left(a+b\right)}\right)\)

\(\dfrac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\dfrac{c}{2}.\sqrt{\dfrac{2k}{k+1}}\left(\dfrac{1}{b+c}+\dfrac{k+1}{2k\left(a+c\right)}\right)\)

\(\Rightarrow VT\le\dfrac{a}{a+b}+\sqrt{\dfrac{k+1}{8k}}.\dfrac{b}{a+b}+\dfrac{a}{a+c}+\sqrt{\dfrac{k+1}{8k}}.\dfrac{c}{a+c}+\sqrt{\dfrac{k}{2k+2}}\)

Tìm k sao cho \(\sqrt{\dfrac{k+1}{8k}}=1\Rightarrow k=\dfrac{1}{7}\)

Do đó trình bày lại bài toán ngắn gọn như sau:

Áp dụng BĐT AM-GM:

\(VT=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{2b}{\sqrt{4\left(b+c\right).\left(b+a\right)}}+\dfrac{2c}{\sqrt{4\left(b+c\right).\left(a+b\right)}}\)

\(\le\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{4\left(b+c\right)}+\dfrac{b}{a+b}+\dfrac{c}{4\left(b+c\right)}+\dfrac{c}{a+c}\)

\(=1+1+\dfrac{1}{4}=\dfrac{9}{4}\)

Dấu = xảy ra khi \(a=7b=7c=\dfrac{7}{\sqrt{15}}\)

30 tháng 5 2018

Ta có :\(\dfrac{1}{\sqrt{5a^2+2ab+2b^2}}=\dfrac{1}{\sqrt{\left(4a^2+4ab+b^2\right)+\left(a^2-2ab+b^2\right)}}\)

\(=\dfrac{1}{\sqrt{\left(2a+b\right)^2+\left(a-b\right)^2}}\le\dfrac{1}{\sqrt{\left(2a+b\right)^2}}=\dfrac{1}{2a+b}\le\dfrac{1}{9}\left(\dfrac{2}{a}+\dfrac{1}{b}\right)\) (Cosi)

Tương tự cộng lại ta được :

\(P\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)=\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{1}{3}\sqrt{3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)}=\dfrac{1}{\sqrt{3}}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\sqrt{3}\)

30 tháng 5 2018

\(\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)\(\le\) \(\dfrac{1}{3}\sqrt{3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)}\) làm thế nào hả bn ?